|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
from abc import ABC |
|
|
|
import pandas as pd |
|
|
|
from api.db import LLMType |
|
from api.db.services.dialog_service import label_question |
|
from api.db.services.knowledgebase_service import KnowledgebaseService |
|
from api.db.services.llm_service import LLMBundle |
|
from api import settings |
|
from agent.component.base import ComponentBase, ComponentParamBase |
|
|
|
|
|
class RetrievalParam(ComponentParamBase): |
|
|
|
""" |
|
Define the Retrieval component parameters. |
|
""" |
|
def __init__(self): |
|
super().__init__() |
|
self.similarity_threshold = 0.2 |
|
self.keywords_similarity_weight = 0.5 |
|
self.top_n = 8 |
|
self.top_k = 1024 |
|
self.kb_ids = [] |
|
self.rerank_id = "" |
|
self.empty_response = "" |
|
|
|
def check(self): |
|
self.check_decimal_float(self.similarity_threshold, "[Retrieval] Similarity threshold") |
|
self.check_decimal_float(self.keywords_similarity_weight, "[Retrieval] Keywords similarity weight") |
|
self.check_positive_number(self.top_n, "[Retrieval] Top N") |
|
|
|
|
|
class Retrieval(ComponentBase, ABC): |
|
component_name = "Retrieval" |
|
|
|
def _run(self, history, **kwargs): |
|
query = self.get_input() |
|
query = str(query["content"][0]) if "content" in query else "" |
|
|
|
kbs = KnowledgebaseService.get_by_ids(self._param.kb_ids) |
|
if not kbs: |
|
return Retrieval.be_output("") |
|
|
|
embd_nms = list(set([kb.embd_id for kb in kbs])) |
|
assert len(embd_nms) == 1, "Knowledge bases use different embedding models." |
|
|
|
embd_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, embd_nms[0]) |
|
self._canvas.set_embedding_model(embd_nms[0]) |
|
|
|
rerank_mdl = None |
|
if self._param.rerank_id: |
|
rerank_mdl = LLMBundle(kbs[0].tenant_id, LLMType.RERANK, self._param.rerank_id) |
|
|
|
kbinfos = settings.retrievaler.retrieval(query, embd_mdl, kbs[0].tenant_id, self._param.kb_ids, |
|
1, self._param.top_n, |
|
self._param.similarity_threshold, 1 - self._param.keywords_similarity_weight, |
|
aggs=False, rerank_mdl=rerank_mdl, |
|
rank_feature=label_question(query, kbs)) |
|
|
|
if not kbinfos["chunks"]: |
|
df = Retrieval.be_output("") |
|
if self._param.empty_response and self._param.empty_response.strip(): |
|
df["empty_response"] = self._param.empty_response |
|
return df |
|
|
|
df = pd.DataFrame(kbinfos["chunks"]) |
|
df["content"] = df["content_with_weight"] |
|
del df["content_with_weight"] |
|
logging.debug("{} {}".format(query, df)) |
|
return df |
|
|
|
|
|
|