|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import base64 |
|
import datetime |
|
import json |
|
import re |
|
import pandas as pd |
|
import requests |
|
from api.db.services.knowledgebase_service import KnowledgebaseService |
|
from rag.nlp import rag_tokenizer |
|
from deepdoc.parser.resume import refactor |
|
from deepdoc.parser.resume import step_one, step_two |
|
from rag.utils import rmSpace |
|
|
|
forbidden_select_fields4resume = [ |
|
"name_pinyin_kwd", "edu_first_fea_kwd", "degree_kwd", "sch_rank_kwd", "edu_fea_kwd" |
|
] |
|
|
|
|
|
def remote_call(filename, binary): |
|
q = { |
|
"header": { |
|
"uid": 1, |
|
"user": "kevinhu", |
|
"log_id": filename |
|
}, |
|
"request": { |
|
"p": { |
|
"request_id": "1", |
|
"encrypt_type": "base64", |
|
"filename": filename, |
|
"langtype": '', |
|
"fileori": base64.b64encode(binary).decode('utf-8') |
|
}, |
|
"c": "resume_parse_module", |
|
"m": "resume_parse" |
|
} |
|
} |
|
for _ in range(3): |
|
try: |
|
resume = requests.post( |
|
"http://127.0.0.1:61670/tog", |
|
data=json.dumps(q)) |
|
resume = resume.json()["response"]["results"] |
|
resume = refactor(resume) |
|
for k in ["education", "work", "project", |
|
"training", "skill", "certificate", "language"]: |
|
if not resume.get(k) and k in resume: |
|
del resume[k] |
|
|
|
resume = step_one.refactor(pd.DataFrame([{"resume_content": json.dumps(resume), "tob_resume_id": "x", |
|
"updated_at": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}])) |
|
resume = step_two.parse(resume) |
|
return resume |
|
except Exception: |
|
logging.exception("Resume parser has not been supported yet!") |
|
return {} |
|
|
|
|
|
def chunk(filename, binary=None, callback=None, **kwargs): |
|
""" |
|
The supported file formats are pdf, docx and txt. |
|
To maximize the effectiveness, parse the resume correctly, please concat us: https://github.com/infiniflow/ragflow |
|
""" |
|
if not re.search(r"\.(pdf|doc|docx|txt)$", filename, flags=re.IGNORECASE): |
|
raise NotImplementedError("file type not supported yet(pdf supported)") |
|
|
|
if not binary: |
|
with open(filename, "rb") as f: |
|
binary = f.read() |
|
|
|
callback(0.2, "Resume parsing is going on...") |
|
resume = remote_call(filename, binary) |
|
if len(resume.keys()) < 7: |
|
callback(-1, "Resume is not successfully parsed.") |
|
raise Exception("Resume parser remote call fail!") |
|
callback(0.6, "Done parsing. Chunking...") |
|
logging.debug("chunking resume: " + json.dumps(resume, ensure_ascii=False, indent=2)) |
|
|
|
field_map = { |
|
"name_kwd": "姓名/名字", |
|
"name_pinyin_kwd": "姓名拼音/名字拼音", |
|
"gender_kwd": "性别(男,女)", |
|
"age_int": "年龄/岁/年纪", |
|
"phone_kwd": "电话/手机/微信", |
|
"email_tks": "email/e-mail/邮箱", |
|
"position_name_tks": "职位/职能/岗位/职责", |
|
"expect_city_names_tks": "期望城市", |
|
"work_exp_flt": "工作年限/工作年份/N年经验/毕业了多少年", |
|
"corporation_name_tks": "最近就职(上班)的公司/上一家公司", |
|
|
|
"first_school_name_tks": "第一学历毕业学校", |
|
"first_degree_kwd": "第一学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)", |
|
"highest_degree_kwd": "最高学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)", |
|
"first_major_tks": "第一学历专业", |
|
"edu_first_fea_kwd": "第一学历标签(211,留学,双一流,985,海外知名,重点大学,中专,专升本,专科,本科,大专)", |
|
|
|
"degree_kwd": "过往学历(高中,职高,硕士,本科,博士,初中,中技,中专,专科,专升本,MPA,MBA,EMBA)", |
|
"major_tks": "学过的专业/过往专业", |
|
"school_name_tks": "学校/毕业院校", |
|
"sch_rank_kwd": "学校标签(顶尖学校,精英学校,优质学校,一般学校)", |
|
"edu_fea_kwd": "教育标签(211,留学,双一流,985,海外知名,重点大学,中专,专升本,专科,本科,大专)", |
|
|
|
"corp_nm_tks": "就职过的公司/之前的公司/上过班的公司", |
|
"edu_end_int": "毕业年份", |
|
"industry_name_tks": "所在行业", |
|
|
|
"birth_dt": "生日/出生年份", |
|
"expect_position_name_tks": "期望职位/期望职能/期望岗位", |
|
} |
|
|
|
titles = [] |
|
for n in ["name_kwd", "gender_kwd", "position_name_tks", "age_int"]: |
|
v = resume.get(n, "") |
|
if isinstance(v, list): |
|
v = v[0] |
|
if n.find("tks") > 0: |
|
v = rmSpace(v) |
|
titles.append(str(v)) |
|
doc = { |
|
"docnm_kwd": filename, |
|
"title_tks": rag_tokenizer.tokenize("-".join(titles) + "-简历") |
|
} |
|
doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"]) |
|
pairs = [] |
|
for n, m in field_map.items(): |
|
if not resume.get(n): |
|
continue |
|
v = resume[n] |
|
if isinstance(v, list): |
|
v = " ".join(v) |
|
if n.find("tks") > 0: |
|
v = rmSpace(v) |
|
pairs.append((m, str(v))) |
|
|
|
doc["content_with_weight"] = "\n".join( |
|
["{}: {}".format(re.sub(r"([^()]+)", "", k), v) for k, v in pairs]) |
|
doc["content_ltks"] = rag_tokenizer.tokenize(doc["content_with_weight"]) |
|
doc["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(doc["content_ltks"]) |
|
for n, _ in field_map.items(): |
|
if n not in resume: |
|
continue |
|
if isinstance(resume[n], list) and ( |
|
len(resume[n]) == 1 or n not in forbidden_select_fields4resume): |
|
resume[n] = resume[n][0] |
|
if n.find("_tks") > 0: |
|
resume[n] = rag_tokenizer.fine_grained_tokenize(resume[n]) |
|
doc[n] = resume[n] |
|
|
|
logging.debug("chunked resume to " + str(doc)) |
|
KnowledgebaseService.update_parser_config( |
|
kwargs["kb_id"], {"field_map": field_map}) |
|
return [doc] |
|
|
|
|
|
if __name__ == "__main__": |
|
import sys |
|
|
|
def dummy(a, b): |
|
pass |
|
chunk(sys.argv[1], callback=dummy) |
|
|