|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from api.db.services.user_service import TenantService
|
|
from api.settings import database_logger
|
|
from rag.llm import EmbeddingModel, CvModel, ChatModel, RerankModel
|
|
from api.db import LLMType
|
|
from api.db.db_models import DB, UserTenant
|
|
from api.db.db_models import LLMFactories, LLM, TenantLLM
|
|
from api.db.services.common_service import CommonService
|
|
|
|
|
|
class LLMFactoriesService(CommonService):
|
|
model = LLMFactories
|
|
|
|
|
|
class LLMService(CommonService):
|
|
model = LLM
|
|
|
|
|
|
class TenantLLMService(CommonService):
|
|
model = TenantLLM
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_api_key(cls, tenant_id, model_name):
|
|
objs = cls.query(tenant_id=tenant_id, llm_name=model_name)
|
|
if not objs:
|
|
return
|
|
return objs[0]
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_my_llms(cls, tenant_id):
|
|
fields = [
|
|
cls.model.llm_factory,
|
|
LLMFactories.logo,
|
|
LLMFactories.tags,
|
|
cls.model.model_type,
|
|
cls.model.llm_name,
|
|
cls.model.used_tokens
|
|
]
|
|
objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where(
|
|
cls.model.tenant_id == tenant_id, ~cls.model.api_key.is_null()).dicts()
|
|
|
|
return list(objs)
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def model_instance(cls, tenant_id, llm_type,
|
|
llm_name=None, lang="Chinese"):
|
|
e, tenant = TenantService.get_by_id(tenant_id)
|
|
if not e:
|
|
raise LookupError("Tenant not found")
|
|
|
|
if llm_type == LLMType.EMBEDDING.value:
|
|
mdlnm = tenant.embd_id if not llm_name else llm_name
|
|
elif llm_type == LLMType.SPEECH2TEXT.value:
|
|
mdlnm = tenant.asr_id
|
|
elif llm_type == LLMType.IMAGE2TEXT.value:
|
|
mdlnm = tenant.img2txt_id
|
|
elif llm_type == LLMType.CHAT.value:
|
|
mdlnm = tenant.llm_id if not llm_name else llm_name
|
|
elif llm_type == LLMType.RERANK:
|
|
mdlnm = tenant.rerank_id if not llm_name else llm_name
|
|
else:
|
|
assert False, "LLM type error"
|
|
|
|
model_config = cls.get_api_key(tenant_id, mdlnm)
|
|
if model_config: model_config = model_config.to_dict()
|
|
if not model_config:
|
|
if llm_type in [LLMType.EMBEDDING, LLMType.RERANK]:
|
|
llm = LLMService.query(llm_name=llm_name if llm_name else mdlnm)
|
|
if llm and llm[0].fid in ["Youdao", "FastEmbed", "BAAI"]:
|
|
model_config = {"llm_factory": llm[0].fid, "api_key":"", "llm_name": llm_name if llm_name else mdlnm, "api_base": ""}
|
|
if not model_config:
|
|
if llm_name == "flag-embedding":
|
|
model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "",
|
|
"llm_name": llm_name, "api_base": ""}
|
|
else:
|
|
if not mdlnm:
|
|
raise LookupError(f"Type of {llm_type} model is not set.")
|
|
raise LookupError("Model({}) not authorized".format(mdlnm))
|
|
|
|
if llm_type == LLMType.EMBEDDING.value:
|
|
if model_config["llm_factory"] not in EmbeddingModel:
|
|
return
|
|
return EmbeddingModel[model_config["llm_factory"]](
|
|
model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
|
|
|
|
if llm_type == LLMType.RERANK:
|
|
if model_config["llm_factory"] not in RerankModel:
|
|
return
|
|
return RerankModel[model_config["llm_factory"]](
|
|
model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
|
|
|
|
if llm_type == LLMType.IMAGE2TEXT.value:
|
|
if model_config["llm_factory"] not in CvModel:
|
|
return
|
|
return CvModel[model_config["llm_factory"]](
|
|
model_config["api_key"], model_config["llm_name"], lang,
|
|
base_url=model_config["api_base"]
|
|
)
|
|
|
|
if llm_type == LLMType.CHAT.value:
|
|
if model_config["llm_factory"] not in ChatModel:
|
|
return
|
|
return ChatModel[model_config["llm_factory"]](
|
|
model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def increase_usage(cls, tenant_id, llm_type, used_tokens, llm_name=None):
|
|
e, tenant = TenantService.get_by_id(tenant_id)
|
|
if not e:
|
|
raise LookupError("Tenant not found")
|
|
|
|
if llm_type == LLMType.EMBEDDING.value:
|
|
mdlnm = tenant.embd_id
|
|
elif llm_type == LLMType.SPEECH2TEXT.value:
|
|
mdlnm = tenant.asr_id
|
|
elif llm_type == LLMType.IMAGE2TEXT.value:
|
|
mdlnm = tenant.img2txt_id
|
|
elif llm_type == LLMType.CHAT.value:
|
|
mdlnm = tenant.llm_id if not llm_name else llm_name
|
|
elif llm_type == LLMType.RERANK:
|
|
mdlnm = tenant.llm_id if not llm_name else llm_name
|
|
else:
|
|
assert False, "LLM type error"
|
|
|
|
num = 0
|
|
try:
|
|
for u in cls.query(tenant_id = tenant_id, llm_name=mdlnm):
|
|
num += cls.model.update(used_tokens = u.used_tokens + used_tokens)\
|
|
.where(cls.model.tenant_id == tenant_id, cls.model.llm_name == mdlnm)\
|
|
.execute()
|
|
except Exception as e:
|
|
pass
|
|
return num
|
|
|
|
@classmethod
|
|
@DB.connection_context()
|
|
def get_openai_models(cls):
|
|
objs = cls.model.select().where(
|
|
(cls.model.llm_factory == "OpenAI"),
|
|
~(cls.model.llm_name == "text-embedding-3-small"),
|
|
~(cls.model.llm_name == "text-embedding-3-large")
|
|
).dicts()
|
|
return list(objs)
|
|
|
|
|
|
class LLMBundle(object):
|
|
def __init__(self, tenant_id, llm_type, llm_name=None, lang="Chinese"):
|
|
self.tenant_id = tenant_id
|
|
self.llm_type = llm_type
|
|
self.llm_name = llm_name
|
|
self.mdl = TenantLLMService.model_instance(
|
|
tenant_id, llm_type, llm_name, lang=lang)
|
|
assert self.mdl, "Can't find mole for {}/{}/{}".format(
|
|
tenant_id, llm_type, llm_name)
|
|
self.max_length = 512
|
|
for lm in LLMService.query(llm_name=llm_name):
|
|
self.max_length = lm.max_tokens
|
|
break
|
|
|
|
def encode(self, texts: list, batch_size=32):
|
|
emd, used_tokens = self.mdl.encode(texts, batch_size)
|
|
if not TenantLLMService.increase_usage(
|
|
self.tenant_id, self.llm_type, used_tokens):
|
|
database_logger.error(
|
|
"Can't update token usage for {}/EMBEDDING".format(self.tenant_id))
|
|
return emd, used_tokens
|
|
|
|
def encode_queries(self, query: str):
|
|
emd, used_tokens = self.mdl.encode_queries(query)
|
|
if not TenantLLMService.increase_usage(
|
|
self.tenant_id, self.llm_type, used_tokens):
|
|
database_logger.error(
|
|
"Can't update token usage for {}/EMBEDDING".format(self.tenant_id))
|
|
return emd, used_tokens
|
|
|
|
def similarity(self, query: str, texts: list):
|
|
sim, used_tokens = self.mdl.similarity(query, texts)
|
|
if not TenantLLMService.increase_usage(
|
|
self.tenant_id, self.llm_type, used_tokens):
|
|
database_logger.error(
|
|
"Can't update token usage for {}/RERANK".format(self.tenant_id))
|
|
return sim, used_tokens
|
|
|
|
def describe(self, image, max_tokens=300):
|
|
txt, used_tokens = self.mdl.describe(image, max_tokens)
|
|
if not TenantLLMService.increase_usage(
|
|
self.tenant_id, self.llm_type, used_tokens):
|
|
database_logger.error(
|
|
"Can't update token usage for {}/IMAGE2TEXT".format(self.tenant_id))
|
|
return txt
|
|
|
|
def chat(self, system, history, gen_conf):
|
|
txt, used_tokens = self.mdl.chat(system, history, gen_conf)
|
|
if not TenantLLMService.increase_usage(
|
|
self.tenant_id, self.llm_type, used_tokens, self.llm_name):
|
|
database_logger.error(
|
|
"Can't update token usage for {}/CHAT".format(self.tenant_id))
|
|
return txt
|
|
|
|
def chat_streamly(self, system, history, gen_conf):
|
|
for txt in self.mdl.chat_streamly(system, history, gen_conf):
|
|
if isinstance(txt, int):
|
|
if not TenantLLMService.increase_usage(
|
|
self.tenant_id, self.llm_type, txt, self.llm_name):
|
|
database_logger.error(
|
|
"Can't update token usage for {}/CHAT".format(self.tenant_id))
|
|
return
|
|
yield txt
|
|
|