|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import re, copy, time, datetime, demjson3, \
|
|
traceback, signal
|
|
import numpy as np
|
|
from deepdoc.parser.resume.entities import degrees, schools, corporations
|
|
from rag.nlp import rag_tokenizer, surname
|
|
from xpinyin import Pinyin
|
|
from contextlib import contextmanager
|
|
|
|
|
|
class TimeoutException(Exception): pass
|
|
|
|
|
|
@contextmanager
|
|
def time_limit(seconds):
|
|
def signal_handler(signum, frame):
|
|
raise TimeoutException("Timed out!")
|
|
|
|
signal.signal(signal.SIGALRM, signal_handler)
|
|
signal.alarm(seconds)
|
|
try:
|
|
yield
|
|
finally:
|
|
signal.alarm(0)
|
|
|
|
|
|
ENV = None
|
|
PY = Pinyin()
|
|
|
|
|
|
def rmHtmlTag(line):
|
|
return re.sub(r"<[a-z0-9.\"=';,:\+_/ -]+>", " ", line, 100000, re.IGNORECASE)
|
|
|
|
|
|
def highest_degree(dg):
|
|
if not dg: return ""
|
|
if type(dg) == type(""): dg = [dg]
|
|
m = {"初中": 0, "高中": 1, "中专": 2, "大专": 3, "专升本": 4, "本科": 5, "硕士": 6, "博士": 7, "博士后": 8}
|
|
return sorted([(d, m.get(d, -1)) for d in dg], key=lambda x: x[1] * -1)[0][0]
|
|
|
|
|
|
def forEdu(cv):
|
|
if not cv.get("education_obj"):
|
|
cv["integerity_flt"] *= 0.8
|
|
return cv
|
|
|
|
first_fea, fea, maj, fmaj, deg, fdeg, sch, fsch, st_dt, ed_dt = [], [], [], [], [], [], [], [], [], []
|
|
edu_nst = []
|
|
edu_end_dt = ""
|
|
cv["school_rank_int"] = 1000000
|
|
for ii, n in enumerate(sorted(cv["education_obj"], key=lambda x: x.get("start_time", "3"))):
|
|
e = {}
|
|
if n.get("end_time"):
|
|
if n["end_time"] > edu_end_dt: edu_end_dt = n["end_time"]
|
|
try:
|
|
dt = n["end_time"]
|
|
if re.match(r"[0-9]{9,}", dt): dt = turnTm2Dt(dt)
|
|
y, m, d = getYMD(dt)
|
|
ed_dt.append(str(y))
|
|
e["end_dt_kwd"] = str(y)
|
|
except Exception as e:
|
|
pass
|
|
if n.get("start_time"):
|
|
try:
|
|
dt = n["start_time"]
|
|
if re.match(r"[0-9]{9,}", dt): dt = turnTm2Dt(dt)
|
|
y, m, d = getYMD(dt)
|
|
st_dt.append(str(y))
|
|
e["start_dt_kwd"] = str(y)
|
|
except Exception as e:
|
|
pass
|
|
|
|
r = schools.select(n.get("school_name", ""))
|
|
if r:
|
|
if str(r.get("type", "")) == "1": fea.append("211")
|
|
if str(r.get("type", "")) == "2": fea.append("211")
|
|
if str(r.get("is_abroad", "")) == "1": fea.append("留学")
|
|
if str(r.get("is_double_first", "")) == "1": fea.append("双一流")
|
|
if str(r.get("is_985", "")) == "1": fea.append("985")
|
|
if str(r.get("is_world_known", "")) == "1": fea.append("海外知名")
|
|
if r.get("rank") and cv["school_rank_int"] > r["rank"]: cv["school_rank_int"] = r["rank"]
|
|
|
|
if n.get("school_name") and isinstance(n["school_name"], str):
|
|
sch.append(re.sub(r"(211|985|重点大学|[,&;;-])", "", n["school_name"]))
|
|
e["sch_nm_kwd"] = sch[-1]
|
|
fea.append(rag_tokenizer.fine_grained_tokenize(rag_tokenizer.tokenize(n.get("school_name", ""))).split(" ")[-1])
|
|
|
|
if n.get("discipline_name") and isinstance(n["discipline_name"], str):
|
|
maj.append(n["discipline_name"])
|
|
e["major_kwd"] = n["discipline_name"]
|
|
|
|
if not n.get("degree") and "985" in fea and not first_fea: n["degree"] = "1"
|
|
|
|
if n.get("degree"):
|
|
d = degrees.get_name(n["degree"])
|
|
if d: e["degree_kwd"] = d
|
|
if d == "本科" and ("专科" in deg or "专升本" in deg or "中专" in deg or "大专" in deg or re.search(r"(成人|自考|自学考试)",
|
|
n.get(
|
|
"school_name",
|
|
""))): d = "专升本"
|
|
if d: deg.append(d)
|
|
|
|
|
|
if not fdeg and d in ["中专", "专升本", "专科", "本科", "大专"]:
|
|
fdeg = [d]
|
|
if n.get("school_name"): fsch = [n["school_name"]]
|
|
if n.get("discipline_name"): fmaj = [n["discipline_name"]]
|
|
first_fea = copy.deepcopy(fea)
|
|
|
|
edu_nst.append(e)
|
|
|
|
cv["sch_rank_kwd"] = []
|
|
if cv["school_rank_int"] <= 20 \
|
|
or ("海外名校" in fea and cv["school_rank_int"] <= 200):
|
|
cv["sch_rank_kwd"].append("顶尖学校")
|
|
elif cv["school_rank_int"] <= 50 and cv["school_rank_int"] > 20 \
|
|
or ("海外名校" in fea and cv["school_rank_int"] <= 500 and \
|
|
cv["school_rank_int"] > 200):
|
|
cv["sch_rank_kwd"].append("精英学校")
|
|
elif cv["school_rank_int"] > 50 and ("985" in fea or "211" in fea) \
|
|
or ("海外名校" in fea and cv["school_rank_int"] > 500):
|
|
cv["sch_rank_kwd"].append("优质学校")
|
|
else:
|
|
cv["sch_rank_kwd"].append("一般学校")
|
|
|
|
if edu_nst: cv["edu_nst"] = edu_nst
|
|
if fea: cv["edu_fea_kwd"] = list(set(fea))
|
|
if first_fea: cv["edu_first_fea_kwd"] = list(set(first_fea))
|
|
if maj: cv["major_kwd"] = maj
|
|
if fsch: cv["first_school_name_kwd"] = fsch
|
|
if fdeg: cv["first_degree_kwd"] = fdeg
|
|
if fmaj: cv["first_major_kwd"] = fmaj
|
|
if st_dt: cv["edu_start_kwd"] = st_dt
|
|
if ed_dt: cv["edu_end_kwd"] = ed_dt
|
|
if ed_dt: cv["edu_end_int"] = max([int(t) for t in ed_dt])
|
|
if deg:
|
|
if "本科" in deg and "专科" in deg:
|
|
deg.append("专升本")
|
|
deg = [d for d in deg if d != '本科']
|
|
cv["degree_kwd"] = deg
|
|
cv["highest_degree_kwd"] = highest_degree(deg)
|
|
if edu_end_dt:
|
|
try:
|
|
if re.match(r"[0-9]{9,}", edu_end_dt): edu_end_dt = turnTm2Dt(edu_end_dt)
|
|
if edu_end_dt.strip("\n") == "至今": edu_end_dt = cv.get("updated_at_dt", str(datetime.date.today()))
|
|
y, m, d = getYMD(edu_end_dt)
|
|
cv["work_exp_flt"] = min(int(str(datetime.date.today())[0:4]) - int(y), cv.get("work_exp_flt", 1000))
|
|
except Exception as e:
|
|
print("EXCEPTION: ", e, edu_end_dt, cv.get("work_exp_flt"))
|
|
if sch:
|
|
cv["school_name_kwd"] = sch
|
|
if (len(cv.get("degree_kwd", [])) >= 1 and "本科" in cv["degree_kwd"]) \
|
|
or all([c.lower() in ["硕士", "博士", "mba", "博士后"] for c in cv.get("degree_kwd", [])]) \
|
|
or not cv.get("degree_kwd"):
|
|
for c in sch:
|
|
if schools.is_good(c):
|
|
if "tag_kwd" not in cv: cv["tag_kwd"] = []
|
|
cv["tag_kwd"].append("好学校")
|
|
cv["tag_kwd"].append("好学历")
|
|
break
|
|
if (len(cv.get("degree_kwd", [])) >= 1 and \
|
|
"本科" in cv["degree_kwd"] and \
|
|
any([d.lower() in ["硕士", "博士", "mba", "博士"] for d in cv.get("degree_kwd", [])])) \
|
|
or all([d.lower() in ["硕士", "博士", "mba", "博士后"] for d in cv.get("degree_kwd", [])]) \
|
|
or any([d in ["mba", "emba", "博士后"] for d in cv.get("degree_kwd", [])]):
|
|
if "tag_kwd" not in cv: cv["tag_kwd"] = []
|
|
if "好学历" not in cv["tag_kwd"]: cv["tag_kwd"].append("好学历")
|
|
|
|
if cv.get("major_kwd"): cv["major_tks"] = rag_tokenizer.tokenize(" ".join(maj))
|
|
if cv.get("school_name_kwd"): cv["school_name_tks"] = rag_tokenizer.tokenize(" ".join(sch))
|
|
if cv.get("first_school_name_kwd"): cv["first_school_name_tks"] = rag_tokenizer.tokenize(" ".join(fsch))
|
|
if cv.get("first_major_kwd"): cv["first_major_tks"] = rag_tokenizer.tokenize(" ".join(fmaj))
|
|
|
|
return cv
|
|
|
|
|
|
def forProj(cv):
|
|
if not cv.get("project_obj"): return cv
|
|
|
|
pro_nms, desc = [], []
|
|
for i, n in enumerate(
|
|
sorted(cv.get("project_obj", []), key=lambda x: str(x.get("updated_at", "")) if type(x) == type({}) else "",
|
|
reverse=True)):
|
|
if n.get("name"): pro_nms.append(n["name"])
|
|
if n.get("describe"): desc.append(str(n["describe"]))
|
|
if n.get("responsibilities"): desc.append(str(n["responsibilities"]))
|
|
if n.get("achivement"): desc.append(str(n["achivement"]))
|
|
|
|
if pro_nms:
|
|
|
|
cv["project_name_tks"] = rag_tokenizer.tokenize(pro_nms[0])
|
|
if desc:
|
|
cv["pro_desc_ltks"] = rag_tokenizer.tokenize(rmHtmlTag(" ".join(desc)))
|
|
cv["project_desc_ltks"] = rag_tokenizer.tokenize(rmHtmlTag(desc[0]))
|
|
|
|
return cv
|
|
|
|
|
|
def json_loads(line):
|
|
return demjson3.decode(re.sub(r": *(True|False)", r": '\1'", line))
|
|
|
|
|
|
def forWork(cv):
|
|
if not cv.get("work_obj"):
|
|
cv["integerity_flt"] *= 0.7
|
|
return cv
|
|
|
|
flds = ["position_name", "corporation_name", "corporation_id", "responsibilities",
|
|
"industry_name", "subordinates_count"]
|
|
duas = []
|
|
scales = []
|
|
fea = {c: [] for c in flds}
|
|
latest_job_tm = ""
|
|
goodcorp = False
|
|
goodcorp_ = False
|
|
work_st_tm = ""
|
|
corp_tags = []
|
|
for i, n in enumerate(
|
|
sorted(cv.get("work_obj", []), key=lambda x: str(x.get("start_time", "")) if type(x) == type({}) else "",
|
|
reverse=True)):
|
|
if type(n) == type(""):
|
|
try:
|
|
n = json_loads(n)
|
|
except Exception as e:
|
|
continue
|
|
|
|
if n.get("start_time") and (not work_st_tm or n["start_time"] < work_st_tm): work_st_tm = n["start_time"]
|
|
for c in flds:
|
|
if not n.get(c) or str(n[c]) == '0':
|
|
fea[c].append("")
|
|
continue
|
|
if c == "corporation_name":
|
|
n[c] = corporations.corpNorm(n[c], False)
|
|
if corporations.is_good(n[c]):
|
|
if i == 0:
|
|
goodcorp = True
|
|
else:
|
|
goodcorp_ = True
|
|
ct = corporations.corp_tag(n[c])
|
|
if i == 0:
|
|
corp_tags.extend(ct)
|
|
elif ct and ct[0] != "软外":
|
|
corp_tags.extend([f"{t}(曾)" for t in ct])
|
|
|
|
fea[c].append(rmHtmlTag(str(n[c]).lower()))
|
|
|
|
y, m, d = getYMD(n.get("start_time"))
|
|
if not y or not m: continue
|
|
st = "%s-%02d-%02d" % (y, int(m), int(d))
|
|
latest_job_tm = st
|
|
|
|
y, m, d = getYMD(n.get("end_time"))
|
|
if (not y or not m) and i > 0: continue
|
|
if not y or not m or int(y) > 2022: y, m, d = getYMD(str(n.get("updated_at", "")))
|
|
if not y or not m: continue
|
|
ed = "%s-%02d-%02d" % (y, int(m), int(d))
|
|
|
|
try:
|
|
duas.append((datetime.datetime.strptime(ed, "%Y-%m-%d") - datetime.datetime.strptime(st, "%Y-%m-%d")).days)
|
|
except Exception as e:
|
|
print("kkkkkkkkkkkkkkkkkkkk", n.get("start_time"), n.get("end_time"))
|
|
|
|
if n.get("scale"):
|
|
r = re.search(r"^([0-9]+)", str(n["scale"]))
|
|
if r: scales.append(int(r.group(1)))
|
|
|
|
if goodcorp:
|
|
if "tag_kwd" not in cv: cv["tag_kwd"] = []
|
|
cv["tag_kwd"].append("好公司")
|
|
if goodcorp_:
|
|
if "tag_kwd" not in cv: cv["tag_kwd"] = []
|
|
cv["tag_kwd"].append("好公司(曾)")
|
|
|
|
if corp_tags:
|
|
if "tag_kwd" not in cv: cv["tag_kwd"] = []
|
|
cv["tag_kwd"].extend(corp_tags)
|
|
cv["corp_tag_kwd"] = [c for c in corp_tags if re.match(r"(综合|行业)", c)]
|
|
|
|
if latest_job_tm: cv["latest_job_dt"] = latest_job_tm
|
|
if fea["corporation_id"]: cv["corporation_id"] = fea["corporation_id"]
|
|
|
|
if fea["position_name"]:
|
|
cv["position_name_tks"] = rag_tokenizer.tokenize(fea["position_name"][0])
|
|
cv["position_name_sm_tks"] = rag_tokenizer.fine_grained_tokenize(cv["position_name_tks"])
|
|
cv["pos_nm_tks"] = rag_tokenizer.tokenize(" ".join(fea["position_name"][1:]))
|
|
|
|
if fea["industry_name"]:
|
|
cv["industry_name_tks"] = rag_tokenizer.tokenize(fea["industry_name"][0])
|
|
cv["industry_name_sm_tks"] = rag_tokenizer.fine_grained_tokenize(cv["industry_name_tks"])
|
|
cv["indu_nm_tks"] = rag_tokenizer.tokenize(" ".join(fea["industry_name"][1:]))
|
|
|
|
if fea["corporation_name"]:
|
|
cv["corporation_name_kwd"] = fea["corporation_name"][0]
|
|
cv["corp_nm_kwd"] = fea["corporation_name"]
|
|
cv["corporation_name_tks"] = rag_tokenizer.tokenize(fea["corporation_name"][0])
|
|
cv["corporation_name_sm_tks"] = rag_tokenizer.fine_grained_tokenize(cv["corporation_name_tks"])
|
|
cv["corp_nm_tks"] = rag_tokenizer.tokenize(" ".join(fea["corporation_name"][1:]))
|
|
|
|
if fea["responsibilities"]:
|
|
cv["responsibilities_ltks"] = rag_tokenizer.tokenize(fea["responsibilities"][0])
|
|
cv["resp_ltks"] = rag_tokenizer.tokenize(" ".join(fea["responsibilities"][1:]))
|
|
|
|
if fea["subordinates_count"]: fea["subordinates_count"] = [int(i) for i in fea["subordinates_count"] if
|
|
re.match(r"[^0-9]+$", str(i))]
|
|
if fea["subordinates_count"]: cv["max_sub_cnt_int"] = np.max(fea["subordinates_count"])
|
|
|
|
if type(cv.get("corporation_id")) == type(1): cv["corporation_id"] = [str(cv["corporation_id"])]
|
|
if not cv.get("corporation_id"): cv["corporation_id"] = []
|
|
for i in cv.get("corporation_id", []):
|
|
cv["baike_flt"] = max(corporations.baike(i), cv["baike_flt"] if "baike_flt" in cv else 0)
|
|
|
|
if work_st_tm:
|
|
try:
|
|
if re.match(r"[0-9]{9,}", work_st_tm): work_st_tm = turnTm2Dt(work_st_tm)
|
|
y, m, d = getYMD(work_st_tm)
|
|
cv["work_exp_flt"] = min(int(str(datetime.date.today())[0:4]) - int(y), cv.get("work_exp_flt", 1000))
|
|
except Exception as e:
|
|
print("EXCEPTION: ", e, work_st_tm, cv.get("work_exp_flt"))
|
|
|
|
cv["job_num_int"] = 0
|
|
if duas:
|
|
cv["dua_flt"] = np.mean(duas)
|
|
cv["cur_dua_int"] = duas[0]
|
|
cv["job_num_int"] = len(duas)
|
|
if scales: cv["scale_flt"] = np.max(scales)
|
|
return cv
|
|
|
|
|
|
def turnTm2Dt(b):
|
|
if not b: return
|
|
b = str(b).strip()
|
|
if re.match(r"[0-9]{10,}", b): b = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(int(b[:10])))
|
|
return b
|
|
|
|
|
|
def getYMD(b):
|
|
y, m, d = "", "", "01"
|
|
if not b: return (y, m, d)
|
|
b = turnTm2Dt(b)
|
|
if re.match(r"[0-9]{4}", b): y = int(b[:4])
|
|
r = re.search(r"[0-9]{4}.?([0-9]{1,2})", b)
|
|
if r: m = r.group(1)
|
|
r = re.search(r"[0-9]{4}.?[0-9]{,2}.?([0-9]{1,2})", b)
|
|
if r: d = r.group(1)
|
|
if not d or int(d) == 0 or int(d) > 31: d = "1"
|
|
if not m or int(m) > 12 or int(m) < 1: m = "1"
|
|
return (y, m, d)
|
|
|
|
|
|
def birth(cv):
|
|
if not cv.get("birth"):
|
|
cv["integerity_flt"] *= 0.9
|
|
return cv
|
|
y, m, d = getYMD(cv["birth"])
|
|
if not m or not y: return cv
|
|
b = "%s-%02d-%02d" % (y, int(m), int(d))
|
|
cv["birth_dt"] = b
|
|
cv["birthday_kwd"] = "%02d%02d" % (int(m), int(d))
|
|
|
|
cv["age_int"] = datetime.datetime.now().year - int(y)
|
|
return cv
|
|
|
|
|
|
def parse(cv):
|
|
for k in cv.keys():
|
|
if cv[k] == '\\N': cv[k] = ''
|
|
|
|
tks_fld = ["address", "corporation_name", "discipline_name", "email", "expect_city_names",
|
|
"expect_industry_name", "expect_position_name", "industry_name", "industry_names", "name",
|
|
"position_name", "school_name", "self_remark", "title_name"]
|
|
small_tks_fld = ["corporation_name", "expect_position_name", "position_name", "school_name", "title_name"]
|
|
kwd_fld = ["address", "city", "corporation_type", "degree", "discipline_name", "expect_city_names", "email",
|
|
"expect_industry_name", "expect_position_name", "expect_type", "gender", "industry_name",
|
|
"industry_names", "political_status", "position_name", "scale", "school_name", "phone", "tel"]
|
|
num_fld = ["annual_salary", "annual_salary_from", "annual_salary_to", "expect_annual_salary", "expect_salary_from",
|
|
"expect_salary_to", "salary_month"]
|
|
|
|
is_fld = [
|
|
("is_fertility", "已育", "未育"),
|
|
("is_house", "有房", "没房"),
|
|
("is_management_experience", "有管理经验", "无管理经验"),
|
|
("is_marital", "已婚", "未婚"),
|
|
("is_oversea", "有海外经验", "无海外经验")
|
|
]
|
|
|
|
rmkeys = []
|
|
for k in cv.keys():
|
|
if cv[k] is None: rmkeys.append(k)
|
|
if (type(cv[k]) == type([]) or type(cv[k]) == type("")) and len(cv[k]) == 0: rmkeys.append(k)
|
|
for k in rmkeys: del cv[k]
|
|
|
|
integerity = 0.
|
|
flds_num = 0.
|
|
|
|
def hasValues(flds):
|
|
nonlocal integerity, flds_num
|
|
flds_num += len(flds)
|
|
for f in flds:
|
|
v = str(cv.get(f, ""))
|
|
if len(v) > 0 and v != '0' and v != '[]': integerity += 1
|
|
|
|
hasValues(tks_fld)
|
|
hasValues(small_tks_fld)
|
|
hasValues(kwd_fld)
|
|
hasValues(num_fld)
|
|
cv["integerity_flt"] = integerity / flds_num
|
|
|
|
if cv.get("corporation_type"):
|
|
for p, r in [(r"(公司|企业|其它|其他|Others*|\n|未填写|Enterprises|Company|companies)", ""),
|
|
(r"[//.· <\((]+.*", ""),
|
|
(r".*(合资|民企|股份制|中外|私营|个体|Private|创业|Owned|投资).*", "民营"),
|
|
(r".*(机关|事业).*", "机关"),
|
|
(r".*(非盈利|Non-profit).*", "非盈利"),
|
|
(r".*(外企|外商|欧美|foreign|Institution|Australia|港资).*", "外企"),
|
|
(r".*国有.*", "国企"),
|
|
(r"[ ()\(\)人/·0-9-]+", ""),
|
|
(r".*(元|规模|于|=|北京|上海|至今|中国|工资|州|shanghai|强|餐饮|融资|职).*", "")]:
|
|
cv["corporation_type"] = re.sub(p, r, cv["corporation_type"], 1000, re.IGNORECASE)
|
|
if len(cv["corporation_type"]) < 2: del cv["corporation_type"]
|
|
|
|
if cv.get("political_status"):
|
|
for p, r in [
|
|
(r".*党员.*", "党员"),
|
|
(r".*(无党派|公民).*", "群众"),
|
|
(r".*团员.*", "团员")]:
|
|
cv["political_status"] = re.sub(p, r, cv["political_status"])
|
|
if not re.search(r"[党团群]", cv["political_status"]): del cv["political_status"]
|
|
|
|
if cv.get("phone"): cv["phone"] = re.sub(r"^0*86([0-9]{11})", r"\1", re.sub(r"[^0-9]+", "", cv["phone"]))
|
|
|
|
keys = list(cv.keys())
|
|
for k in keys:
|
|
|
|
if k.find("_obj") > 0:
|
|
try:
|
|
cv[k] = json_loads(cv[k])
|
|
cv[k] = [a for _, a in cv[k].items()]
|
|
nms = []
|
|
for n in cv[k]:
|
|
if type(n) != type({}) or "name" not in n or not n.get("name"): continue
|
|
n["name"] = re.sub(r"((442)|\t )", "", n["name"]).strip().lower()
|
|
if not n["name"]: continue
|
|
nms.append(n["name"])
|
|
if nms:
|
|
t = k[:-4]
|
|
cv[f"{t}_kwd"] = nms
|
|
cv[f"{t}_tks"] = rag_tokenizer.tokenize(" ".join(nms))
|
|
except Exception as e:
|
|
print("【EXCEPTION】:", str(traceback.format_exc()), cv[k])
|
|
cv[k] = []
|
|
|
|
|
|
if k in tks_fld:
|
|
cv[f"{k}_tks"] = rag_tokenizer.tokenize(cv[k])
|
|
if k in small_tks_fld: cv[f"{k}_sm_tks"] = rag_tokenizer.tokenize(cv[f"{k}_tks"])
|
|
|
|
|
|
if k in kwd_fld: cv[f"{k}_kwd"] = [n.lower()
|
|
for n in re.split(r"[\t,,;;. ]",
|
|
re.sub(r"([^a-zA-Z])[ ]+([^a-zA-Z ])", r"\1,\2", cv[k])
|
|
) if n]
|
|
|
|
if k in num_fld and cv.get(k): cv[f"{k}_int"] = cv[k]
|
|
|
|
cv["email_kwd"] = cv.get("email_tks", "").replace(" ", "")
|
|
|
|
if cv.get("name"):
|
|
nm = re.sub(r"[\n——\-\((\+].*", "", cv["name"].strip())
|
|
nm = re.sub(r"[ \t ]+", " ", nm)
|
|
if re.match(r"[a-zA-Z ]+$", nm):
|
|
if len(nm.split(" ")) > 1:
|
|
cv["name"] = nm
|
|
else:
|
|
nm = ""
|
|
elif nm and (surname.isit(nm[0]) or surname.isit(nm[:2])):
|
|
nm = re.sub(r"[a-zA-Z]+.*", "", nm[:5])
|
|
else:
|
|
nm = ""
|
|
cv["name"] = nm.strip()
|
|
name = cv["name"]
|
|
|
|
|
|
cv["name_py_tks"] = " ".join(PY.get_pinyins(nm[:20], '')) + " " + " ".join(PY.get_pinyins(nm[:20], ' '))
|
|
cv["name_py_pref0_tks"] = ""
|
|
cv["name_py_pref_tks"] = ""
|
|
for py in PY.get_pinyins(nm[:20], ''):
|
|
for i in range(2, len(py) + 1): cv["name_py_pref_tks"] += " " + py[:i]
|
|
for py in PY.get_pinyins(nm[:20], ' '):
|
|
py = py.split(" ")
|
|
for i in range(1, len(py) + 1): cv["name_py_pref0_tks"] += " " + "".join(py[:i])
|
|
|
|
cv["name_kwd"] = name
|
|
cv["name_pinyin_kwd"] = PY.get_pinyins(nm[:20], ' ')[:3]
|
|
cv["name_tks"] = (
|
|
rag_tokenizer.tokenize(name) + " " + (" ".join(list(name)) if not re.match(r"[a-zA-Z ]+$", name) else "")
|
|
) if name else ""
|
|
else:
|
|
cv["integerity_flt"] /= 2.
|
|
|
|
if cv.get("phone"):
|
|
r = re.search(r"(1[3456789][0-9]{9})", cv["phone"])
|
|
if not r:
|
|
cv["phone"] = ""
|
|
else:
|
|
cv["phone"] = r.group(1)
|
|
|
|
|
|
if cv.get("updated_at") and isinstance(cv["updated_at"], datetime.datetime):
|
|
cv["updated_at_dt"] = cv["updated_at"].strftime('%Y-%m-%d %H:%M:%S')
|
|
else:
|
|
y, m, d = getYMD(str(cv.get("updated_at", "")))
|
|
if not y: y = "2012"
|
|
if not m: m = "01"
|
|
if not d: d = "01"
|
|
cv["updated_at_dt"] = f"%s-%02d-%02d 00:00:00" % (y, int(m), int(d))
|
|
|
|
|
|
if cv.get("responsibilities"): cv["responsibilities_ltks"] = rag_tokenizer.tokenize(rmHtmlTag(cv["responsibilities"]))
|
|
|
|
|
|
fea = []
|
|
for f, y, n in is_fld:
|
|
if f not in cv: continue
|
|
if cv[f] == '是': fea.append(y)
|
|
if cv[f] == '否': fea.append(n)
|
|
|
|
if fea: cv["tag_kwd"] = fea
|
|
|
|
cv = forEdu(cv)
|
|
cv = forProj(cv)
|
|
cv = forWork(cv)
|
|
cv = birth(cv)
|
|
|
|
cv["corp_proj_sch_deg_kwd"] = [c for c in cv.get("corp_tag_kwd", [])]
|
|
for i in range(len(cv["corp_proj_sch_deg_kwd"])):
|
|
for j in cv.get("sch_rank_kwd", []): cv["corp_proj_sch_deg_kwd"][i] += "+" + j
|
|
for i in range(len(cv["corp_proj_sch_deg_kwd"])):
|
|
if cv.get("highest_degree_kwd"): cv["corp_proj_sch_deg_kwd"][i] += "+" + cv["highest_degree_kwd"]
|
|
|
|
try:
|
|
if not cv.get("work_exp_flt") and cv.get("work_start_time"):
|
|
if re.match(r"[0-9]{9,}", str(cv["work_start_time"])):
|
|
cv["work_start_dt"] = turnTm2Dt(cv["work_start_time"])
|
|
cv["work_exp_flt"] = (time.time() - int(int(cv["work_start_time"]) / 1000)) / 3600. / 24. / 365.
|
|
elif re.match(r"[0-9]{4}[^0-9]", str(cv["work_start_time"])):
|
|
y, m, d = getYMD(str(cv["work_start_time"]))
|
|
cv["work_start_dt"] = f"%s-%02d-%02d 00:00:00" % (y, int(m), int(d))
|
|
cv["work_exp_flt"] = int(str(datetime.date.today())[0:4]) - int(y)
|
|
except Exception as e:
|
|
print("【EXCEPTION】", e, "==>", cv.get("work_start_time"))
|
|
if "work_exp_flt" not in cv and cv.get("work_experience", 0): cv["work_exp_flt"] = int(cv["work_experience"]) / 12.
|
|
|
|
keys = list(cv.keys())
|
|
for k in keys:
|
|
if not re.search(r"_(fea|tks|nst|dt|int|flt|ltks|kwd|id)$", k): del cv[k]
|
|
for k in cv.keys():
|
|
if not re.search("_(kwd|id)$", k) or type(cv[k]) != type([]): continue
|
|
cv[k] = list(set([re.sub("(市)$", "", str(n)) for n in cv[k] if n not in ['中国', '0']]))
|
|
keys = [k for k in cv.keys() if re.search(r"_feas*$", k)]
|
|
for k in keys:
|
|
if cv[k] <= 0: del cv[k]
|
|
|
|
cv["tob_resume_id"] = str(cv["tob_resume_id"])
|
|
cv["id"] = cv["tob_resume_id"]
|
|
print("CCCCCCCCCCCCCCC")
|
|
|
|
return dealWithInt64(cv)
|
|
|
|
|
|
def dealWithInt64(d):
|
|
if isinstance(d, dict):
|
|
for n, v in d.items():
|
|
d[n] = dealWithInt64(v)
|
|
|
|
if isinstance(d, list):
|
|
d = [dealWithInt64(t) for t in d]
|
|
|
|
if isinstance(d, np.integer): d = int(d)
|
|
return d
|
|
|
|
|