|
|
|
import json
|
|
from deepdoc.parser.resume.entities import degrees, regions, industries
|
|
|
|
FIELDS = [
|
|
"address STRING",
|
|
"annual_salary int",
|
|
"annual_salary_from int",
|
|
"annual_salary_to int",
|
|
"birth STRING",
|
|
"card STRING",
|
|
"certificate_obj string",
|
|
"city STRING",
|
|
"corporation_id int",
|
|
"corporation_name STRING",
|
|
"corporation_type STRING",
|
|
"degree STRING",
|
|
"discipline_name STRING",
|
|
"education_obj string",
|
|
"email STRING",
|
|
"expect_annual_salary int",
|
|
"expect_city_names string",
|
|
"expect_industry_name STRING",
|
|
"expect_position_name STRING",
|
|
"expect_salary_from int",
|
|
"expect_salary_to int",
|
|
"expect_type STRING",
|
|
"gender STRING",
|
|
"industry_name STRING",
|
|
"industry_names STRING",
|
|
"is_deleted STRING",
|
|
"is_fertility STRING",
|
|
"is_house STRING",
|
|
"is_management_experience STRING",
|
|
"is_marital STRING",
|
|
"is_oversea STRING",
|
|
"language_obj string",
|
|
"name STRING",
|
|
"nation STRING",
|
|
"phone STRING",
|
|
"political_status STRING",
|
|
"position_name STRING",
|
|
"project_obj string",
|
|
"responsibilities string",
|
|
"salary_month int",
|
|
"scale STRING",
|
|
"school_name STRING",
|
|
"self_remark string",
|
|
"skill_obj string",
|
|
"title_name STRING",
|
|
"tob_resume_id STRING",
|
|
"updated_at Timestamp",
|
|
"wechat STRING",
|
|
"work_obj string",
|
|
"work_experience int",
|
|
"work_start_time BIGINT"
|
|
]
|
|
|
|
def refactor(df):
|
|
def deal_obj(obj, k, kk):
|
|
if not isinstance(obj, type({})):
|
|
return ""
|
|
obj = obj.get(k, {})
|
|
if not isinstance(obj, type({})):
|
|
return ""
|
|
return obj.get(kk, "")
|
|
|
|
def loadjson(line):
|
|
try:
|
|
return json.loads(line)
|
|
except Exception as e:
|
|
pass
|
|
return {}
|
|
|
|
df["obj"] = df["resume_content"].map(lambda x: loadjson(x))
|
|
df.fillna("", inplace=True)
|
|
|
|
clms = ["tob_resume_id", "updated_at"]
|
|
|
|
def extract(nms, cc=None):
|
|
nonlocal clms
|
|
clms.extend(nms)
|
|
for c in nms:
|
|
if cc:
|
|
df[c] = df["obj"].map(lambda x: deal_obj(x, cc, c))
|
|
else:
|
|
df[c] = df["obj"].map(
|
|
lambda x: json.dumps(
|
|
x.get(
|
|
c,
|
|
{}),
|
|
ensure_ascii=False) if isinstance(
|
|
x,
|
|
type(
|
|
{})) and (
|
|
isinstance(
|
|
x.get(c),
|
|
type(
|
|
{})) or not x.get(c)) else str(x).replace(
|
|
"None",
|
|
""))
|
|
|
|
extract(["education", "work", "certificate", "project", "language",
|
|
"skill"])
|
|
extract(["wechat", "phone", "is_deleted",
|
|
"name", "tel", "email"], "contact")
|
|
extract(["nation", "expect_industry_name", "salary_month",
|
|
"industry_ids", "is_house", "birth", "annual_salary_from",
|
|
"annual_salary_to", "card",
|
|
"expect_salary_to", "expect_salary_from",
|
|
"expect_position_name", "gender", "city",
|
|
"is_fertility", "expect_city_names",
|
|
"political_status", "title_name", "expect_annual_salary",
|
|
"industry_name", "address", "position_name", "school_name",
|
|
"corporation_id",
|
|
"is_oversea", "responsibilities",
|
|
"work_start_time", "degree", "management_experience",
|
|
"expect_type", "corporation_type", "scale", "corporation_name",
|
|
"self_remark", "annual_salary", "work_experience",
|
|
"discipline_name", "marital", "updated_at"], "basic")
|
|
|
|
df["degree"] = df["degree"].map(lambda x: degrees.get_name(x))
|
|
df["address"] = df["address"].map(lambda x: " ".join(regions.get_names(x)))
|
|
df["industry_names"] = df["industry_ids"].map(lambda x: " ".join([" ".join(industries.get_names(i)) for i in
|
|
str(x).split(",")]))
|
|
clms.append("industry_names")
|
|
|
|
def arr2str(a):
|
|
if not a:
|
|
return ""
|
|
if isinstance(a, list):
|
|
a = " ".join([str(i) for i in a])
|
|
return str(a).replace(",", " ")
|
|
|
|
df["expect_industry_name"] = df["expect_industry_name"].map(
|
|
lambda x: arr2str(x))
|
|
df["gender"] = df["gender"].map(
|
|
lambda x: "男" if x == 'M' else (
|
|
"女" if x == 'F' else ""))
|
|
for c in ["is_fertility", "is_oversea", "is_house",
|
|
"management_experience", "marital"]:
|
|
df[c] = df[c].map(
|
|
lambda x: '是' if x == 'Y' else (
|
|
'否' if x == 'N' else ""))
|
|
df["is_management_experience"] = df["management_experience"]
|
|
df["is_marital"] = df["marital"]
|
|
clms.extend(["is_management_experience", "is_marital"])
|
|
|
|
df.fillna("", inplace=True)
|
|
for i in range(len(df)):
|
|
if not df.loc[i, "phone"].strip() and df.loc[i, "tel"].strip():
|
|
df.loc[i, "phone"] = df.loc[i, "tel"].strip()
|
|
|
|
for n in ["industry_ids", "management_experience", "marital", "tel"]:
|
|
for i in range(len(clms)):
|
|
if clms[i] == n:
|
|
del clms[i]
|
|
break
|
|
|
|
clms = list(set(clms))
|
|
|
|
df = df.reindex(sorted(clms), axis=1)
|
|
|
|
for c in clms:
|
|
df[c] = df[c].map(
|
|
lambda s: str(s).replace(
|
|
"\t",
|
|
" ").replace(
|
|
"\n",
|
|
"\\n").replace(
|
|
"\r",
|
|
"\\n"))
|
|
|
|
return dict(zip([n.split(" ")[0] for n in FIELDS], df.values.tolist()[0]))
|
|
|