|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import datetime
|
|
|
|
from flask import request
|
|
from flask_login import login_required, current_user
|
|
from elasticsearch_dsl import Q
|
|
|
|
from rag.app.qa import rmPrefix, beAdoc
|
|
from rag.nlp import search, rag_tokenizer
|
|
from rag.utils.es_conn import ELASTICSEARCH
|
|
from rag.utils import rmSpace
|
|
from api.db import LLMType, ParserType
|
|
from api.db.services.knowledgebase_service import KnowledgebaseService
|
|
from api.db.services.llm_service import TenantLLMService
|
|
from api.db.services.user_service import UserTenantService
|
|
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
|
|
from api.db.services.document_service import DocumentService
|
|
from api.settings import RetCode, retrievaler
|
|
from api.utils.api_utils import get_json_result
|
|
import hashlib
|
|
import re
|
|
|
|
|
|
@manager.route('/list', methods=['POST'])
|
|
@login_required
|
|
@validate_request("doc_id")
|
|
def list_chunk():
|
|
req = request.json
|
|
doc_id = req["doc_id"]
|
|
page = int(req.get("page", 1))
|
|
size = int(req.get("size", 30))
|
|
question = req.get("keywords", "")
|
|
try:
|
|
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
|
|
if not tenant_id:
|
|
return get_data_error_result(retmsg="Tenant not found!")
|
|
e, doc = DocumentService.get_by_id(doc_id)
|
|
if not e:
|
|
return get_data_error_result(retmsg="Document not found!")
|
|
query = {
|
|
"doc_ids": [doc_id], "page": page, "size": size, "question": question, "sort": True
|
|
}
|
|
if "available_int" in req:
|
|
query["available_int"] = int(req["available_int"])
|
|
sres = retrievaler.search(query, search.index_name(tenant_id))
|
|
res = {"total": sres.total, "chunks": [], "doc": doc.to_dict()}
|
|
for id in sres.ids:
|
|
d = {
|
|
"chunk_id": id,
|
|
"content_with_weight": rmSpace(sres.highlight[id]) if question and id in sres.highlight else sres.field[id].get(
|
|
"content_with_weight", ""),
|
|
"doc_id": sres.field[id]["doc_id"],
|
|
"docnm_kwd": sres.field[id]["docnm_kwd"],
|
|
"important_kwd": sres.field[id].get("important_kwd", []),
|
|
"img_id": sres.field[id].get("img_id", ""),
|
|
"available_int": sres.field[id].get("available_int", 1),
|
|
"positions": sres.field[id].get("position_int", "").split("\t")
|
|
}
|
|
if len(d["positions"]) % 5 == 0:
|
|
poss = []
|
|
for i in range(0, len(d["positions"]), 5):
|
|
poss.append([float(d["positions"][i]), float(d["positions"][i + 1]), float(d["positions"][i + 2]),
|
|
float(d["positions"][i + 3]), float(d["positions"][i + 4])])
|
|
d["positions"] = poss
|
|
res["chunks"].append(d)
|
|
return get_json_result(data=res)
|
|
except Exception as e:
|
|
if str(e).find("not_found") > 0:
|
|
return get_json_result(data=False, retmsg=f'No chunk found!',
|
|
retcode=RetCode.DATA_ERROR)
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route('/get', methods=['GET'])
|
|
@login_required
|
|
def get():
|
|
chunk_id = request.args["chunk_id"]
|
|
try:
|
|
tenants = UserTenantService.query(user_id=current_user.id)
|
|
if not tenants:
|
|
return get_data_error_result(retmsg="Tenant not found!")
|
|
res = ELASTICSEARCH.get(
|
|
chunk_id, search.index_name(
|
|
tenants[0].tenant_id))
|
|
if not res.get("found"):
|
|
return server_error_response("Chunk not found")
|
|
id = res["_id"]
|
|
res = res["_source"]
|
|
res["chunk_id"] = id
|
|
k = []
|
|
for n in res.keys():
|
|
if re.search(r"(_vec$|_sm_|_tks|_ltks)", n):
|
|
k.append(n)
|
|
for n in k:
|
|
del res[n]
|
|
|
|
return get_json_result(data=res)
|
|
except Exception as e:
|
|
if str(e).find("NotFoundError") >= 0:
|
|
return get_json_result(data=False, retmsg=f'Chunk not found!',
|
|
retcode=RetCode.DATA_ERROR)
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route('/set', methods=['POST'])
|
|
@login_required
|
|
@validate_request("doc_id", "chunk_id", "content_with_weight",
|
|
"important_kwd")
|
|
def set():
|
|
req = request.json
|
|
d = {
|
|
"id": req["chunk_id"],
|
|
"content_with_weight": req["content_with_weight"]}
|
|
d["content_ltks"] = rag_tokenizer.tokenize(req["content_with_weight"])
|
|
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
|
|
d["important_kwd"] = req["important_kwd"]
|
|
d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_kwd"]))
|
|
if "available_int" in req:
|
|
d["available_int"] = req["available_int"]
|
|
|
|
try:
|
|
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
|
|
if not tenant_id:
|
|
return get_data_error_result(retmsg="Tenant not found!")
|
|
embd_mdl = TenantLLMService.model_instance(
|
|
tenant_id, LLMType.EMBEDDING.value)
|
|
e, doc = DocumentService.get_by_id(req["doc_id"])
|
|
if not e:
|
|
return get_data_error_result(retmsg="Document not found!")
|
|
|
|
if doc.parser_id == ParserType.QA:
|
|
arr = [
|
|
t for t in re.split(
|
|
r"[\n\t]",
|
|
req["content_with_weight"]) if len(t) > 1]
|
|
if len(arr) != 2:
|
|
return get_data_error_result(
|
|
retmsg="Q&A must be separated by TAB/ENTER key.")
|
|
q, a = rmPrefix(arr[0]), rmPrefix[arr[1]]
|
|
d = beAdoc(d, arr[0], arr[1], not any(
|
|
[rag_tokenizer.is_chinese(t) for t in q + a]))
|
|
|
|
v, c = embd_mdl.encode([doc.name, req["content_with_weight"]])
|
|
v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
|
|
d["q_%d_vec" % len(v)] = v.tolist()
|
|
ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
|
|
return get_json_result(data=True)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route('/switch', methods=['POST'])
|
|
@login_required
|
|
@validate_request("chunk_ids", "available_int", "doc_id")
|
|
def switch():
|
|
req = request.json
|
|
try:
|
|
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
|
|
if not tenant_id:
|
|
return get_data_error_result(retmsg="Tenant not found!")
|
|
if not ELASTICSEARCH.upsert([{"id": i, "available_int": int(req["available_int"])} for i in req["chunk_ids"]],
|
|
search.index_name(tenant_id)):
|
|
return get_data_error_result(retmsg="Index updating failure")
|
|
return get_json_result(data=True)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route('/rm', methods=['POST'])
|
|
@login_required
|
|
@validate_request("chunk_ids")
|
|
def rm():
|
|
req = request.json
|
|
try:
|
|
if not ELASTICSEARCH.deleteByQuery(
|
|
Q("ids", values=req["chunk_ids"]), search.index_name(current_user.id)):
|
|
return get_data_error_result(retmsg="Index updating failure")
|
|
return get_json_result(data=True)
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route('/create', methods=['POST'])
|
|
@login_required
|
|
@validate_request("doc_id", "content_with_weight")
|
|
def create():
|
|
req = request.json
|
|
md5 = hashlib.md5()
|
|
md5.update((req["content_with_weight"] + req["doc_id"]).encode("utf-8"))
|
|
chunck_id = md5.hexdigest()
|
|
d = {"id": chunck_id, "content_ltks": rag_tokenizer.tokenize(req["content_with_weight"]),
|
|
"content_with_weight": req["content_with_weight"]}
|
|
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
|
|
d["important_kwd"] = req.get("important_kwd", [])
|
|
d["important_tks"] = rag_tokenizer.tokenize(" ".join(req.get("important_kwd", [])))
|
|
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
|
|
d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
|
|
|
|
try:
|
|
e, doc = DocumentService.get_by_id(req["doc_id"])
|
|
if not e:
|
|
return get_data_error_result(retmsg="Document not found!")
|
|
d["kb_id"] = [doc.kb_id]
|
|
d["docnm_kwd"] = doc.name
|
|
d["doc_id"] = doc.id
|
|
|
|
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
|
|
if not tenant_id:
|
|
return get_data_error_result(retmsg="Tenant not found!")
|
|
|
|
embd_mdl = TenantLLMService.model_instance(
|
|
tenant_id, LLMType.EMBEDDING.value)
|
|
v, c = embd_mdl.encode([doc.name, req["content_with_weight"]])
|
|
DocumentService.increment_chunk_num(req["doc_id"], doc.kb_id, c, 1, 0)
|
|
v = 0.1 * v[0] + 0.9 * v[1]
|
|
d["q_%d_vec" % len(v)] = v.tolist()
|
|
ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
|
|
return get_json_result(data={"chunk_id": chunck_id})
|
|
except Exception as e:
|
|
return server_error_response(e)
|
|
|
|
|
|
@manager.route('/retrieval_test', methods=['POST'])
|
|
@login_required
|
|
@validate_request("kb_id", "question")
|
|
def retrieval_test():
|
|
req = request.json
|
|
page = int(req.get("page", 1))
|
|
size = int(req.get("size", 30))
|
|
question = req["question"]
|
|
kb_id = req["kb_id"]
|
|
doc_ids = req.get("doc_ids", [])
|
|
similarity_threshold = float(req.get("similarity_threshold", 0.2))
|
|
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
|
|
top = int(req.get("top_k", 1024))
|
|
try:
|
|
e, kb = KnowledgebaseService.get_by_id(kb_id)
|
|
if not e:
|
|
return get_data_error_result(retmsg="Knowledgebase not found!")
|
|
|
|
embd_mdl = TenantLLMService.model_instance(
|
|
kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)
|
|
ranks = retrievaler.retrieval(question, embd_mdl, kb.tenant_id, [kb_id], page, size, similarity_threshold,
|
|
vector_similarity_weight, top, doc_ids)
|
|
for c in ranks["chunks"]:
|
|
if "vector" in c:
|
|
del c["vector"]
|
|
|
|
return get_json_result(data=ranks)
|
|
except Exception as e:
|
|
if str(e).find("not_found") > 0:
|
|
return get_json_result(data=False, retmsg=f'No chunk found! Check the chunk status please!',
|
|
retcode=RetCode.DATA_ERROR)
|
|
return server_error_response(e)
|
|
|