File size: 57,661 Bytes
88e5a61 2262506 88e5a61 6fb2244 74ade83 88e5a61 b916b29 8d43c11 9426215 d13f144 cb33b9e ba91369 17d873a 79cd49c a2c2382 f859b0d 4beec7d 85a7d1b 88e5a61 0202117 7c6cf75 e094004 e3239a2 88e5a61 dfc220f 88e5a61 8e109c7 dfc220f 88e5a61 51db3f9 88e5a61 7346a8e 88e5a61 614a413 88e5a61 e52051a 88e5a61 28e0efa 88e5a61 02e5242 88e5a61 e618152 d594e0f 88e5a61 e618152 88e5a61 02e5242 88e5a61 4496b5e 88e5a61 4496b5e 88e5a61 4f018d6 88e5a61 f28ed6a 88e5a61 f28ed6a 51db3f9 88e5a61 a3e5fd8 88e5a61 f28ed6a 88e5a61 5769711 e52051a 28e0efa d594e0f 799f66f d594e0f f28c040 bec7e87 7346a8e 0b0058a ee64c42 305b8c0 7346a8e 305b8c0 7346a8e b1e1904 26d72b4 51db3f9 88e5a61 7346a8e 88e5a61 7346a8e 88e5a61 305b8c0 88e5a61 305b8c0 88e5a61 7346a8e 88e5a61 305b8c0 88e5a61 305b8c0 88e5a61 8b7269c 88e5a61 8b7269c 88e5a61 8b7269c 88e5a61 305b8c0 88e5a61 c058dac 4d5d480 88e5a61 8b7269c 88e5a61 8b7269c 4d5d480 8b7269c ecfd212 8b7269c ecfd212 8b7269c ecfd212 8b7269c ecfd212 8b7269c 88e5a61 8b7269c 88e5a61 8b7269c 88e5a61 8b7269c 88e5a61 4d5d480 88e5a61 4d5d480 88e5a61 4d5d480 88e5a61 4d5d480 88e5a61 2b252d0 7346a8e 02e5242 4d5d480 c0be17f 980e3c4 7346a8e 980e3c4 bf38604 980e3c4 92890f8 4496b5e 9bf66a3 7346a8e c0be17f 85a7d1b c0be17f 4b36338 c5da52f 51db3f9 88e5a61 4496b5e 88e5a61 8e109c7 9e42ef1 b6e253d c4edd97 88e5a61 38eebf9 5769711 88e5a61 28e0efa 88e5a61 dfc220f 88e5a61 7c07000 88e5a61 dfc220f 0812124 88e5a61 dfc220f 28e0efa 88e5a61 0b31353 88e5a61 dfc220f 88e5a61 dfc220f 88e5a61 5461e28 88e5a61 7b381b0 88e5a61 7b381b0 88e5a61 799f66f 88e5a61 b9c5b85 88e5a61 5461e28 28e0efa 88e5a61 28e0efa 88e5a61 28e0efa a3e5fd8 99ac12c 28e0efa dfc220f 2df5d5b f850783 b916b29 ed12544 7651eb4 b916b29 f850783 b916b29 4beec7d 8d43c11 7ba250b 4beec7d dfc220f d3b461d d237d49 eedc75d 8ee6bdd dfc220f 6eec14a 52a51dc 589b0da 1c7ab64 dfc220f f5ebe5e 60788d3 51db3f9 446c54c 88e5a61 99ac12c a3e5fd8 99ac12c 88e5a61 28e0efa ed12544 88e5a61 bf1e3ff 88e5a61 f850783 88e5a61 28e0efa 88e5a61 e92bd36 88e5a61 5769711 88e5a61 28e0efa d594e0f e10ed78 88e5a61 21cf732 a70b412 e693841 21cf732 e693841 e10ed78 6ec7653 d2e955e 63f5b44 efaa250 6ec7653 9e27b49 4496b5e e6abe77 06a1df0 e10ed78 4496b5e e10ed78 a70b412 777daee fa680e0 17d873a 834690f 17d873a 2262506 e5dbc25 88e5a61 7c6cf75 88e5a61 930da24 88e5a61 7c6cf75 18af531 7c6cf75 8d2a400 ebf2bde 99d136b ba91369 7c6cf75 838db53 1157a9f ed19e93 0812124 f9e19e4 457df3d ebd60e1 64b1da0 7b381b0 8aa83b1 4a1cf8b 12f28d5 fa5e9f6 5c37eb6 799f66f 5c37eb6 8d992fe b2b0160 cb6b883 a732a09 2082761 bc50356 67a5f12 e094004 2962077 38eebf9 5000eb5 38eebf9 970e973 38eebf9 1157a9f 38eebf9 f9e19e4 1157a9f 8aa83b1 17cd183 b25a0c6 4496b5e 6e0d24d bc50356 6e0d24d bc50356 6e0d24d fbb1e63 86d0fad 5d3a620 77dbe3e 4138aee bc50356 77dbe3e bc50356 e878c81 4138aee bc50356 942993f 95ccaf9 4138aee bc50356 95ccaf9 a2c2382 bc50356 ed12544 0202117 95ccaf9 99d136b ac4d1d4 99d136b 284d945 ac4d1d4 284d945 2c5f7df b9c5b85 ac4d1d4 4c2d648 ac4d1d4 4496b5e 4c2d648 42dbb1f ac4d1d4 42dbb1f eb0c846 0109a6b ac4d1d4 0109a6b 99e5e05 2e208d4 6b7630c b88bbad 6b7630c b88bbad 6b7630c 51db3f9 6b7630c 8aa83b1 c33b05f 55e7b7a ac4d1d4 55e7b7a 6dc139b ac4d1d4 c54177d f2de30c ac4d1d4 13bc594 ac4d1d4 13bc594 c4fcec1 c54177d f2de30c ac4d1d4 f2de30c 5000eb5 cdbe301 739dd81 ac4d1d4 739dd81 cd85d9e 79cd49c 414b804 79cd49c eadfd19 a2c2382 0a9da14 eadfd19 f5ebe5e 0a9da14 4928b00 f859b0d e618152 0e469cf d11c358 ac4d1d4 d11c358 6d4da5b 2bdad3e aaea411 19737f9 efda1c9 838db53 88e5a61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 |
export default {
translation: {
common: {
delete: 'Delete',
deleteModalTitle: 'Are you sure to delete this item?',
ok: 'Yes',
cancel: 'No',
total: 'Total',
rename: 'Rename',
name: 'Name',
save: 'Save',
namePlaceholder: 'Please input name',
next: 'Next',
create: 'Create',
edit: 'Edit',
upload: 'Upload',
english: 'English',
portugueseBr: 'Portuguese (Brazil)',
chinese: 'Simplified Chinese',
traditionalChinese: 'Traditional Chinese',
language: 'Language',
languageMessage: 'Please input your language!',
languagePlaceholder: 'select your language',
copy: 'Copy',
copied: 'Copied',
comingSoon: 'Coming soon',
download: 'Download',
close: 'Close',
preview: 'Preview',
move: 'Move',
warn: 'Warn',
action: 'Action',
s: 'S',
pleaseSelect: 'Please select',
pleaseInput: 'Please input',
submit: 'Submit',
embedIntoSite: 'Embed into webpage',
previousPage: 'Previous',
nextPage: 'Next',
},
login: {
login: 'Sign in',
signUp: 'Sign up',
loginDescription: 'We’re so excited to see you again!',
registerDescription: 'Glad to have you on board!',
emailLabel: 'Email',
emailPlaceholder: 'Please input email',
passwordLabel: 'Password',
passwordPlaceholder: 'Please input password',
rememberMe: 'Remember me',
signInTip: 'Don’t have an account?',
signUpTip: 'Already have an account?',
nicknameLabel: 'Nickname',
nicknamePlaceholder: 'Please input nickname',
register: 'Create an account',
continue: 'Continue',
title: 'Start building your smart assistants.',
description:
'Sign up for free to explore top RAG technology. Create knowledge bases and AIs to empower your business.',
review: 'from 500+ reviews',
},
header: {
knowledgeBase: 'Knowledge Base',
chat: 'Chat',
register: 'Register',
signin: 'Sign in',
home: 'Home',
setting: 'User settings',
logout: 'Log out',
fileManager: 'File Management',
flow: 'Agent',
search: 'Search',
},
knowledgeList: {
welcome: 'Welcome back',
description: 'Which knowledge bases will you use today?',
createKnowledgeBase: 'Create knowledge base',
name: 'Name',
namePlaceholder: 'Please input name!',
doc: 'Docs',
searchKnowledgePlaceholder: 'Search',
noMoreData: `That's all. Nothing more.`,
},
knowledgeDetails: {
dataset: 'Dataset',
testing: 'Retrieval testing',
files: 'files',
configuration: 'Configuration',
knowledgeGraph: 'Knowledge graph',
name: 'Name',
namePlaceholder: 'Please input name!',
doc: 'Docs',
datasetDescription:
'😉 Please wait for your file to finish parsing before starting an AI-powered chat.',
addFile: 'Add file',
searchFiles: 'Search your files',
localFiles: 'Local files',
emptyFiles: 'Create empty file',
webCrawl: 'Web Crawl',
chunkNumber: 'Chunk Number',
uploadDate: 'Upload Date',
chunkMethod: 'Chunk Method',
enabled: 'Enable',
disabled: 'Disable',
action: 'Action',
parsingStatus: 'Parsing Status',
processBeginAt: 'Begin at',
processDuration: 'Duration',
progressMsg: 'Progress',
testingDescription:
'Conduct a retrieval test to check if RAGFlow can recover the intended content for the LLM.',
similarityThreshold: 'Similarity threshold',
similarityThresholdTip:
'RAGFlow employs either a combination of weighted keyword similarity and weighted vector cosine similarity, or a combination of weighted keyword similarity and weighted reranking score during retrieval. This parameter sets the threshold for similarities between the user query and chunks. Any chunk with a similarity score below this threshold will be excluded from the results.',
vectorSimilarityWeight: 'Keywords similarity weight',
vectorSimilarityWeightTip:
'This sets the weight of keyword similarity in the combined similarity score, either used with vector cosine similarity or with reranking score. The total of the two weights must equal 1.0.',
testText: 'Test text',
testTextPlaceholder: 'Input your question here!',
testingLabel: 'Testing',
similarity: 'Hybrid similarity',
termSimilarity: 'Term similarity',
vectorSimilarity: 'Vector similarity',
hits: 'Hits',
view: 'View',
filesSelected: 'Files selected',
upload: 'Upload',
run: 'Parse',
runningStatus0: 'UNParsed',
runningStatus1: 'Parsing',
runningStatus2: 'CANCEL',
runningStatus3: 'SUCCESS',
runningStatus4: 'FAIL',
pageRanges: 'Page Ranges',
pageRangesTip:
'Range of pages to be parsed; pages outside this range will not be processed.',
fromPlaceholder: 'from',
fromMessage: 'Missing start page number',
toPlaceholder: 'to',
toMessage: 'Missing end page number (excluded)',
layoutRecognize: 'Layout recognition & OCR',
layoutRecognizeTip:
'Use visual models for layout analysis to better understand the structure of the document and effectively locate document titles, text blocks, images, and tables. If disabled, only the plain text in the PDF will be retrieved.',
taskPageSize: 'Task page size',
taskPageSizeMessage: 'Please input your task page size!',
taskPageSizeTip: `During layout recognition, a PDF file is split into chunks and processed in parallel to increase processing speed. This parameter sets the size of each chunk. A larger chunk size reduces the likelihood of splitting continuous text between pages.`,
addPage: 'Add page',
greaterThan: 'The current value must be greater than to!',
greaterThanPrevious:
'The current value must be greater than the previous to!',
selectFiles: 'Select files',
changeSpecificCategory: 'Change specific category',
uploadTitle: 'Click or drag file to this area to upload',
uploadDescription:
'Support for a single or bulk upload. Strictly prohibited from uploading company data or other banned files.',
chunk: 'Chunk',
bulk: 'Bulk',
cancel: 'Cancel',
rerankModel: 'Rerank model',
rerankPlaceholder: 'Please select',
rerankTip: `If left empty, RAGFlow will use a combination of weighted keyword similarity and weighted vector cosine similarity; if a rerank model is selected, a weighted reranking score will replace the weighted vector cosine similarity. Please be aware that using a rerank model will significantly increase the system's response time.`,
topK: 'Top-K',
topKTip: `K chunks will be fed into rerank models.`,
delimiter: `Delimiter`,
delimiterTip:
'A delimiter or separator can consist of one or multiple special characters. If it is multiple characters, ensure they are enclosed in backticks( ``). For example, if you configure your delimiters like this: \n`##`;, then your texts will be separated at line breaks, double hash symbols (##), or semicolons.',
html4excel: 'Excel to HTML',
html4excelTip: `When enabled, the spreadsheet will be parsed into HTML tables, and at most 256 rows for one table. Otherwise, it will be parsed into key-value pairs by row.`,
autoKeywords: 'Auto-keyword',
autoKeywordsTip: `Automatically extract N keywords for each chunk to increase their ranking for queries containing those keywords. You can check or update the added keywords for a chunk from the chunk list. Be aware that extra tokens will be consumed by the LLM specified in 'System model settings'.`,
autoQuestions: 'Auto-question',
autoQuestionsTip: `Automatically extract N questions for each chunk to increase their ranking for queries containing those questions. You can check or update the added questions for a chunk from the chunk list. This feature will not disrupt the chunking process if an error occurs, except that it may add an empty result to the original chunk. Be aware that extra tokens will be consumed by the LLM specified in 'System model settings'.`,
redo: 'Do you want to clear the existing {{chunkNum}} chunks?',
setMetaData: 'Set Meta Data',
pleaseInputJson: 'Please enter JSON',
documentMetaTips: `<p>The meta data is in Json format(it's not searchable). It will be added into prompt for LLM if any chunks of this document are included in the prompt.</p>
<p>Examples:</p>
<b>The meta data is:</b><br>
<code>
{
"Author": "Alex Dowson",
"Date": "2024-11-12"
}
</code><br>
<b>The prompt will be:</b><br>
<p>Document: the_name_of_document</p>
<p>Author: Alex Dowson</p>
<p>Date: 2024-11-12</p>
<p>Relevant fragments as following:</p>
<ul>
<li> Here is the chunk content....</li>
<li> Here is the chunk content....</li>
</ul>
`,
metaData: 'Meta data',
deleteDocumentConfirmContent:
'The document is associated with the knowledge graph. After deletion, the related node and relationship information will be deleted, but the graph will not be updated immediately. The update graph action is performed during the process of parsing the new document that carries the knowledge graph extraction task.',
},
knowledgeConfiguration: {
titleDescription:
'Update your knowledge base configuration here, particularly the chunk method.',
name: 'Knowledge base name',
photo: 'Knowledge base photo',
description: 'Description',
language: 'Language',
languageMessage: 'Please input your language!',
languagePlaceholder: 'Please input your language!',
permissions: 'Permissions',
embeddingModel: 'Embedding model',
chunkTokenNumber: 'Chunk token number',
chunkTokenNumberMessage: 'Chunk token number is required',
embeddingModelTip:
'The model that converts chunks into embeddings. It cannot be changed once the knowledge base has chunks. To switch to a different embedding model, you must delete all existing chunks in the knowledge base.',
permissionsTip:
"If set to 'Team', all team members will be able to manage the knowledge base.",
chunkTokenNumberTip:
'It sets the token threshold for a chunk. A paragraph with fewer tokens than this threshold will be combined with the following paragraph until the token count exceeds the threshold, at which point a chunk is created.',
chunkMethod: 'Chunk method',
chunkMethodTip: 'View the tips on the right.',
upload: 'Upload',
english: 'English',
chinese: 'Chinese',
embeddingModelPlaceholder: 'Please select a embedding model',
chunkMethodPlaceholder: 'Please select a chunk method',
save: 'Save',
me: 'Only me',
team: 'Team',
cancel: 'Cancel',
methodTitle: 'Chunk method description',
methodExamples: 'Examples',
methodExamplesDescription:
'The following screenshots are provided for clarity.',
dialogueExamplesTitle: 'Dialogue examples',
methodEmpty:
'This will display a visual explanation of the knowledge base categories',
book: `<p>Supported file formats are <b>DOCX</b>, <b>PDF</b>, <b>TXT</b>.</p><p>
For each book in PDF, please set the <i>page ranges</i> to remove unwanted information and reduce analysis time.</p>`,
laws: `<p>Supported file formats are <b>DOCX</b>, <b>PDF</b>, <b>TXT</b>.</p><p>
Legal documents typically follow a rigorous writing format. We use text feature to identify split point.
</p><p>
The chunk has a granularity consistent with 'ARTICLE', ensuring all upper level text is included in the chunk.
</p>`,
manual: `<p>Only <b>PDF</b> is supported.</p><p>
We assume that the manual has a hierarchical section structure, using the lowest section titles as basic unit for chunking documents. Therefore, figures and tables in the same section will not be separated, which may result in larger chunk sizes.
</p>`,
naive: `<p>Supported file formats are <b>DOCX, EXCEL, PPT, IMAGE, PDF, TXT, MD, JSON, EML, HTML</b>.</p>
<p>This method chunks files using a 'naive' method: </p>
<p>
<li>Use vision detection model to split the texts into smaller segments.</li>
<li>Then, combine adjacent segments until the token count exceeds the threshold specified by 'Chunk token number', at which point a chunk is created.</li></p>`,
paper: `<p>Only <b>PDF</b> file is supported.</p><p>
Papers will be split by section, such as <i>abstract, 1.1, 1.2</i>. </p><p>
This approach enables the LLM to summarize the paper more effectively and to provide more comprehensive, understandable responses.
However, it also increases the context for AI conversations and adds to the computational cost for the LLM. So during a conversation, consider reducing the value of ‘<b>topN</b>’.</p>`,
presentation: `<p>Supported file formats are <b>PDF</b>, <b>PPTX</b>.</p><p>
Every page in the slides is treated as a chunk, with its thumbnail image stored.</p><p>
<i>This chunk method is automatically applied to all uploaded PPT files, so you do not need to specify it manually.</i></p>`,
qa: `
<p>
This chunk method supports <b>EXCEL</b> and <b>CSV/TXT</b> file formats.
</p>
<li>
If a file is in <b>Excel</b> format, it should contain two columns
without headers: one for questions and the other for answers, with the
question column preceding the answer column. Multiple sheets are
acceptable, provided the columns are properly structured.
</li>
<li>
If a file is in <b>CSV/TXT</b> format, it must be UTF-8 encoded with TAB as the delimiter to separate questions and answers.
</li>
<p>
<i>
Lines of texts that fail to follow the above rules will be ignored, and
each Q&A pair will be considered a distinct chunk.
</i>
</p>
`,
resume: `<p>Supported file formats are <b>DOCX</b>, <b>PDF</b>, <b>TXT</b>.
</p><p>
Résumés of various forms are parsed and organized into structured data to facilitate candidate search for recruiters.
</p>
`,
table: `<p>Supported file formats are <b>EXCEL</b> and <b>CSV/TXT</b>.</p><p>
Here're some prerequisites and tips:
<ul>
<li>For CSV or TXT file, the delimiter between columns must be <em><b>TAB</b></em>.</li>
<li>The first row must be column headers.</li>
<li>Column headers must be meaningful terms to aid your LLM's understanding.
It is good practice to juxtapose synonyms separated by a slash <i>'/'</i> and to enumerate values using brackets, for example: <i>'Gender/Sex (male, female)'</i>.<p>
Here are some examples of headers:<ol>
<li>supplier/vendor<b>'TAB'</b>Color (Yellow, Blue, Brown)<b>'TAB'</b>Sex/Gender (male, female)<b>'TAB'</b>size (M, L, XL, XXL)</li>
</ol>
</p>
</li>
<li>Every row in table will be treated as a chunk.</li>
</ul>`,
picture: `
<p>Image files are supported, with video support coming soon.</p><p>
This method employs an OCR model to extract texts from images.
</p><p>
If the text extracted by the OCR model is deemed insufficient, a specified visual LLM will be used to provide a description of the image.
</p>`,
one: `
<p>Supported file formats are <b>DOCX, EXCEL, PDF, TXT</b>.
</p><p>
This method treats each document in its entirety as a chunk.
</p><p>
Applicable when you require the LLM to summarize the entire document, provided it can handle that amount of context length.
</p>`,
knowledgeGraph: `<p>Supported file formats are <b>DOCX, EXCEL, PPT, IMAGE, PDF, TXT, MD, JSON, EML</b>
<p>This approach chunks files using the 'naive'/'General' method. It splits a document into segments and then combines adjacent segments until the token count exceeds the threshold specified by 'Chunk token number', at which point a chunk is created.</p>
<p>The chunks are then fed to the LLM to extract entities and relationships for a knowledge graph and a mind map.</p>
<p>Ensure that you set the <b>Entity types</b>.</p>`,
tag: `<p>Knowlege base using 'Tag' as a chunking method is supposed to be used by other knowledge bases to add tags to their chunks, queries to which will also be with tags too.</p>
<p>Knowlege base using 'Tag' as a chunking method is <b>NOT</b> supposed to be involved in RAG procedure.</p>
<p>The chunks in this knowledge base are examples of tags, which demonstrate the entire tag set and the relevance between chunk and tags.</p>
<p>This chunk method supports <b>EXCEL</b> and <b>CSV/TXT</b> file formats.</p>
<p>If a file is in <b>Excel</b> format, it should contain two columns without headers: one for content and the other for tags, with the content column preceding the tags column. Multiple sheets are acceptable, provided the columns are properly structured.</p>
<p>If a file is in <b>CSV/TXT</b> format, it must be UTF-8 encoded with TAB as the delimiter to separate content and tags.</p>
<p>In tags column, there're English <b>comma</b> between tags.</p>
<i>Lines of texts that fail to follow the above rules will be ignored, and each pair will be considered a distinct chunk.</i>
`,
useRaptor: 'Use RAPTOR to enhance retrieval',
useRaptorTip:
'Recursive Abstractive Processing for Tree-Organized Retrieval, see https://huggingface.co/papers/2401.18059 for more information.',
prompt: 'Prompt',
promptTip: 'LLM prompt used for summarization.',
promptMessage: 'Prompt is required',
promptText: `Please summarize the following paragraphs. Be careful with the numbers, do not make things up. Paragraphs as following:
{cluster_content}
The above is the content you need to summarize.`,
maxToken: 'Max token',
maxTokenTip: 'Maximum token number for summarization.',
maxTokenMessage: 'Max token is required',
threshold: 'Threshold',
thresholdTip: 'The bigger the threshold is the less cluster will be.',
thresholdMessage: 'Threshold is required',
maxCluster: 'Max cluster',
maxClusterTip: 'Maximum cluster number.',
maxClusterMessage: 'Max cluster is required',
randomSeed: 'Random seed',
randomSeedMessage: 'Random seed is required',
entityTypes: 'Entity types',
vietnamese: 'Vietnamese',
pageRank: 'Page rank',
pageRankTip: `This increases the relevance score of the knowledge base. Its value will be added to the relevance score of all retrieved chunks from this knowledge base. Useful when you are searching within multiple knowledge bases and wanting to assign a higher pagerank score to a specific one.`,
tagName: 'Tag',
frequency: 'Frequency',
searchTags: 'Search tags',
tagCloud: 'Cloud',
tagTable: 'Table',
tagSet: 'Tag set',
tagSetTip: `
<p> Selecting the 'Tag' knowledge bases helps to tag every chunks. </p>
<p>Query to those chunks will also be with tags too.</p>
This procedure will improve precision of retrieval by adding more information to the dataset, especially when there's a large set of chunks.
<p>Difference between tags and keywords:</p>
<ul>
<li>Tag is a close set which is defined and manipulated by user while keyword is an open set.</li>
<li>You need to upload tag sets with samples prior to use.</li>
<li>Keywords are generated by LLM which is expensive and time consuming.</li>
</ul>
`,
topnTags: 'Top-N Tags',
tags: 'Tags',
addTag: 'Add tag',
useGraphRag: 'Extract knowledge graph',
useGraphRagTip:
'After files being chunked, all the chunks will be used for knowlege graph generation which helps inference of multi-hop and complex problems a lot.',
graphRagMethod: 'Method',
graphRagMethodTip: `Light: the entity and relation extraction prompt is from GitHub - HKUDS/LightRAG: "LightRAG: Simple and Fast Retrieval-Augmented Generation"</br>
General: the entity and relation extraction prompt is from GitHub - microsoft/graphrag: A modular graph-based Retrieval-Augmented Generation (RAG) system`,
resolution: 'Entity resolution',
resolutionTip: `The resolution procedure would merge entities with the same meaning together which allows the graph conciser and more accurate. Entities as following should be merged: President Trump, Donald Trump, Donald J. Trump, Donald John Trump`,
community: 'Community reports generation',
communityTip:
'Chunks are clustered into hierarchical communities with entities and relationships connecting each segment up through higher levels of abstraction. We then use an LLM to generate a summary of each community, known as a community report. More: https://www.microsoft.com/en-us/research/blog/graphrag-improving-global-search-via-dynamic-community-selection/',
},
chunk: {
chunk: 'Chunk',
bulk: 'Bulk',
selectAll: 'Select All',
enabledSelected: 'Enable selected',
disabledSelected: 'Disable selected',
deleteSelected: 'Delete selected',
search: 'Search',
all: 'All',
enabled: 'Enabled',
disabled: 'Disabled',
keyword: 'Keyword',
function: 'Function',
chunkMessage: 'Please input value!',
full: 'Full text',
ellipse: 'Ellipse',
graph: 'Knowledge graph',
mind: 'Mind map',
question: 'Question',
questionTip: `If there're given questions, the embedding of the chunk will be based on them.`,
},
chat: {
newConversation: 'New conversation',
createAssistant: 'Create an Assistant',
assistantSetting: 'Assistant Setting',
promptEngine: 'Prompt Engine',
modelSetting: 'Model Setting',
chat: 'Chat',
newChat: 'New chat',
send: 'Send',
sendPlaceholder: 'Message the assistant...',
chatConfiguration: 'Chat Configuration',
chatConfigurationDescription:
' Set up a chat assistant dedicated to your selected knowledge bases here! 💕',
assistantName: 'Assistant name',
assistantNameMessage: 'Assistant name is required',
namePlaceholder: 'e.g. Resume Jarvis',
assistantAvatar: 'Assistant avatar',
language: 'Language',
emptyResponse: 'Empty response',
emptyResponseTip: `Set this as a response if no results are retrieved from the knowledge bases for your query, or leave this field blank to allow the LLM to improvise when nothing is found.`,
setAnOpener: 'Opening greeting',
setAnOpenerInitial: `Hi! I'm your assistant, what can I do for you?`,
setAnOpenerTip: 'Set an opening greeting for users.',
knowledgeBases: 'Knowledge bases',
knowledgeBasesMessage: 'Please select',
knowledgeBasesTip:
'Select the knowledge bases to associate with this chat assistant.',
system: 'System',
systemInitialValue: `You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence "The answer you are looking for is not found in the knowledge base!" Answers need to consider chat history.
Here is the knowledge base:
{knowledge}
The above is the knowledge base.`,
systemMessage: 'Please input!',
systemTip:
'Your prompts or instructions for the LLM, including but not limited to its role, the desired length, tone, and language of its answers.',
topN: 'Top N',
topNTip: `Not all chunks with similarity score above the 'similarity threshold' will be sent to the LLM. This selects 'Top N' chunks from the retrieved ones.`,
variable: 'Variable',
variableTip: `Variables can assist in developing more flexible strategies, particularly when you are using our chat assistant management APIs. These variables will be used by 'System' as part of the prompts for the LLM. The variable {knowledge} is a reserved special variable representing your selected knowledge base(s), and all variables should be enclosed in curly braces {}.`,
add: 'Add',
key: 'Key',
optional: 'Optional',
operation: 'Operation',
model: 'Model',
modelTip: 'Large language chat model',
modelMessage: 'Please select!',
freedom: 'Freedom',
improvise: 'Improvise',
precise: 'Precise',
balance: 'Balance',
freedomTip: `A shortcut to 'Temperature', 'Top P', 'Presence penalty', and 'Frequency penalty' settings, indicating the freedom level of the model. This parameter has three options: Select 'Improvise' to produce more creative responses; select 'Precise' (default) to produce more conservative responses; 'Balance' is a middle ground between 'Improvise' and 'Precise'.`,
temperature: 'Temperature',
temperatureMessage: 'Temperature is required',
temperatureTip: `This parameter controls the randomness of the model's predictions. A lower temperature results in more conservative responses, while a higher temperature yields more creative and diverse responses.`,
topP: 'Top P',
topPMessage: 'Top P is required',
topPTip:
'Also known as "nucleus sampling", this parameter sets a threshold for selecting a smaller set of the most likely words to sample from, cutting off the less probable ones.',
presencePenalty: 'Presence penalty',
presencePenaltyMessage: 'Presence penalty is required',
presencePenaltyTip:
'This discourages the model from repeating the same information by penalizing words that have already appeared in the conversation.',
frequencyPenalty: 'Frequency penalty',
frequencyPenaltyMessage: 'Frequency penalty is required',
frequencyPenaltyTip:
'Similar to the presence penalty, this reduces the model’s tendency to repeat the same words frequently.',
maxTokens: 'Max tokens',
maxTokensMessage: 'Max tokens is required',
maxTokensTip: `This sets the maximum length of the model's output, measured in the number of tokens (words or pieces of words). Defaults to 512. If disabled, you lift the maximum token limit, allowing the model to determine the number of tokens in its responses.`,
maxTokensInvalidMessage: 'Please enter a valid number for Max Tokens.',
maxTokensMinMessage: 'Max Tokens cannot be less than 0.',
quote: 'Show quote',
quoteTip: 'Whether to display the original text as a reference.',
selfRag: 'Self-RAG',
selfRagTip: 'Please refer to: https://huggingface.co/papers/2310.11511',
overview: 'Chat ID',
pv: 'Number of messages',
uv: 'Active user number',
speed: 'Token output speed',
tokens: 'Consume the token number',
round: 'Session Interaction Number',
thumbUp: 'customer satisfaction',
preview: 'Preview',
embedded: 'Embedded',
serviceApiEndpoint: 'Service API Endpoint',
apiKey: 'API KEY',
apiReference: 'API Documents',
dateRange: 'Date Range:',
backendServiceApi: 'API Server',
createNewKey: 'Create new key',
created: 'Created',
action: 'Action',
embedModalTitle: 'Embed into webpage',
comingSoon: 'Coming soon',
fullScreenTitle: 'Full Embed',
fullScreenDescription:
'Embed the following iframe into your website at the desired location',
partialTitle: 'Partial Embed',
extensionTitle: 'Chrome Extension',
tokenError: 'Please create API key first.',
betaError:
'Please acquire a RAGFlow API key from the System Settings page first.',
searching: 'Searching...',
parsing: 'Parsing',
uploading: 'Uploading',
uploadFailed: 'Upload failed',
regenerate: 'Regenerate',
read: 'Read content',
tts: 'Text to speech',
ttsTip:
'Ensure you select a TTS model on the Settings page before enabling this toggle to play text as audio.',
relatedQuestion: 'Related question',
answerTitle: 'R',
multiTurn: 'Multi-turn optimization',
multiTurnTip:
'This optimizes user queries using context in a multi-round conversation. When enabled, it will consume additional LLM tokens.',
howUseId: 'How to use chat ID?',
description: 'Description of assistant',
useKnowledgeGraph: 'Use knowledge graph',
useKnowledgeGraphTip:
'It will retrieve descriptions of relevant entities,relations and community reports, which will enhance inference of multi-hop and complex question.',
keyword: 'Keyword analysis',
keywordTip: `Apply LLM to analyze user's questions, extract keywords which will be emphesize during the relevance omputation.`,
},
setting: {
profile: 'Profile',
profileDescription: 'Update your photo and personal details here.',
maxTokens: 'Max Tokens',
maxTokensMessage: 'Max Tokens is required',
maxTokensTip: `This sets the maximum length of the model's output, measured in the number of tokens (words or pieces of words). Defaults to 512. If disabled, you lift the maximum token limit, allowing the model to determine the number of tokens in its responses.`,
maxTokensInvalidMessage: 'Please enter a valid number for Max Tokens.',
maxTokensMinMessage: 'Max Tokens cannot be less than 0.',
password: 'Password',
passwordDescription:
'Please enter your current password to change your password.',
model: 'Model providers',
modelDescription: 'Set the model parameter and API KEY here.',
team: 'Team',
system: 'System',
logout: 'Log out',
api: 'API',
username: 'Username',
usernameMessage: 'Please input your username!',
photo: 'Your photo',
photoDescription: 'This will be displayed on your profile.',
colorSchema: 'Color schema',
colorSchemaMessage: 'Please select your color schema!',
colorSchemaPlaceholder: 'select your color schema',
bright: 'Bright',
dark: 'Dark',
timezone: 'Time zone',
timezoneMessage: 'Please input your timezone!',
timezonePlaceholder: 'select your timezone',
email: 'Email address',
emailDescription: 'Once registered, E-mail cannot be changed.',
currentPassword: 'Current password',
currentPasswordMessage: 'Please input your password!',
newPassword: 'New password',
newPasswordMessage: 'Please input your password!',
newPasswordDescription:
'Your new password must be more than 8 characters.',
confirmPassword: 'Confirm new password',
confirmPasswordMessage: 'Please confirm your password!',
confirmPasswordNonMatchMessage:
'The new password that you entered do not match!',
cancel: 'Cancel',
addedModels: 'Added models',
modelsToBeAdded: 'Models to be added',
addTheModel: 'Add the model',
apiKey: 'API-Key',
apiKeyMessage:
'Please enter the API key (for locally deployed model,ignore this).',
apiKeyTip:
'The API key can be obtained by registering the corresponding LLM supplier.',
showMoreModels: 'Show more models',
baseUrl: 'Base-Url',
baseUrlTip:
'If your API key is from OpenAI, just ignore it. Any other intermediate providers will give this base url with the API key.',
modify: 'Modify',
systemModelSettings: 'System Model Settings',
chatModel: 'Chat model',
chatModelTip:
'The default chat LLM all the newly created knowledgebase will use.',
embeddingModel: 'Embedding model',
embeddingModelTip:
'The default embedding model all the newly created knowledgebase will use.',
img2txtModel: 'Img2txt model',
img2txtModelTip:
'The default multi-module model all the newly created knowledgebase will use. It can describe a picture or video.',
sequence2txtModel: 'Sequence2txt model',
sequence2txtModelTip:
'The default ASR model all the newly created knowledgebase will use. Use this model to translate voices to corresponding text.',
rerankModel: 'Rerank model',
rerankModelTip: `The default rerank model is used to rerank chunks retrieved by users' questions.`,
ttsModel: 'TTS Model',
ttsModelTip:
'The default TTS model will be used to generate speech during conversations upon request.',
workspace: 'Workspace',
upgrade: 'Upgrade',
addLlmTitle: 'Add LLM',
modelName: 'Model name',
modelID: 'Model ID',
modelUid: 'Model UID',
modelNameMessage: 'Please input your model name!',
modelType: 'Model type',
modelTypeMessage: 'Please input your model type!',
addLlmBaseUrl: 'Base url',
baseUrlNameMessage: 'Please input your base url!',
vision: 'Does it support Vision?',
ollamaLink: 'How to integrate {{name}}',
FishAudioLink: 'How to use FishAudio',
TencentCloudLink: 'How to use TencentCloud ASR',
volcModelNameMessage: 'Please input your model name!',
addEndpointID: 'EndpointID of the model',
endpointIDMessage: 'Please input your EndpointID of the model',
addArkApiKey: 'VOLC ARK_API_KEY',
ArkApiKeyMessage: 'Please input your ARK_API_KEY',
bedrockModelNameMessage: 'Please input your model name!',
addBedrockEngineAK: 'ACCESS KEY',
bedrockAKMessage: 'Please input your ACCESS KEY',
addBedrockSK: 'SECRET KEY',
bedrockSKMessage: 'Please input your SECRET KEY',
bedrockRegion: 'AWS Region',
bedrockRegionMessage: 'Please select!',
'us-east-1': 'US East (N. Virginia)',
'us-west-2': 'US West (Oregon)',
'ap-southeast-1': 'Asia Pacific (Singapore)',
'ap-northeast-1': 'Asia Pacific (Tokyo)',
'eu-central-1': 'Europe (Frankfurt)',
'us-gov-west-1': 'AWS GovCloud (US-West)',
'ap-southeast-2': 'Asia Pacific (Sydney)',
addHunyuanSID: 'Hunyuan Secret ID',
HunyuanSIDMessage: 'Please input your Secret ID',
addHunyuanSK: 'Hunyuan Secret Key',
HunyuanSKMessage: 'Please input your Secret Key',
addTencentCloudSID: 'TencentCloud Secret ID',
TencentCloudSIDMessage: 'Please input your Secret ID',
addTencentCloudSK: 'TencentCloud Secret Key',
TencentCloudSKMessage: 'Please input your Secret Key',
SparkModelNameMessage: 'Please select Spark model',
addSparkAPIPassword: 'Spark APIPassword',
SparkAPIPasswordMessage: 'please input your APIPassword',
addSparkAPPID: 'Spark APP ID',
SparkAPPIDMessage: 'please input your APP ID',
addSparkAPISecret: 'Spark APISecret',
SparkAPISecretMessage: 'please input your APISecret',
addSparkAPIKey: 'Spark APIKey',
SparkAPIKeyMessage: 'please input your APIKey',
yiyanModelNameMessage: 'Please input model name',
addyiyanAK: 'yiyan API KEY',
yiyanAKMessage: 'Please input your API KEY',
addyiyanSK: 'yiyan Secret KEY',
yiyanSKMessage: 'Please input your Secret KEY',
FishAudioModelNameMessage:
'Please give your speech synthesis model a name',
addFishAudioAK: 'Fish Audio API KEY',
addFishAudioAKMessage: 'Please input your API KEY',
addFishAudioRefID: 'FishAudio Reference ID',
addFishAudioRefIDMessage:
'Please input the Reference ID (leave blank to use the default model).',
GoogleModelIDMessage: 'Please input your model ID!',
addGoogleProjectID: 'Project ID',
GoogleProjectIDMessage: 'Please input your Project ID',
addGoogleServiceAccountKey:
'Service Account Key(Leave blank if you use Application Default Credentials)',
GoogleServiceAccountKeyMessage:
'Please input Google Cloud Service Account Key in base64 format',
addGoogleRegion: 'Google Cloud Region',
GoogleRegionMessage: 'Please input Google Cloud Region',
modelProvidersWarn: `Please add both embedding model and LLM in <b>Settings > Model providers</b> firstly. Then, set them in 'System model settings'.`,
apiVersion: 'API-Version',
apiVersionMessage: 'Please input API version',
add: 'Add',
updateDate: 'Update Date',
role: 'Role',
invite: 'Invite',
agree: 'Accept',
refuse: 'Decline',
teamMembers: 'Team Members',
joinedTeams: 'Joined Teams',
sureDelete: 'Are you sure to remove this member?',
quit: 'Quit',
sureQuit: 'Are you sure you want to quit the team you joined?',
},
message: {
registered: 'Registered!',
logout: 'logout',
logged: 'logged!',
pleaseSelectChunk: 'Please select chunk!',
modified: 'Modified',
created: 'Created',
deleted: 'Deleted',
renamed: 'Renamed',
operated: 'Operated',
updated: 'Updated',
uploaded: 'Uploaded',
200: 'The server successfully returns the requested data.',
201: 'Create or modify data successfully.',
202: 'A request has been queued in the background (asynchronous task).',
204: 'Data deleted successfully.',
400: 'There was an error in the request issued, and the server did not create or modify data.',
401: 'The user does not have permissions (wrong token, username, password).',
403: 'The user is authorized, but access is prohibited.',
404: 'The request was made for a record that does not exist, and the server did not perform the operation.',
406: 'The requested format is not available.',
410: 'The requested resource has been permanently deleted and will not be available again.',
413: 'The total size of the files uploaded at once is too large.',
422: 'When creating an object, a validation error occurred.',
500: 'A server error occurred, please check the server.',
502: 'Gateway error.',
503: 'The service is unavailable and the server is temporarily overloaded or undergoing maintenance.',
504: 'Gateway timeout.',
requestError: 'Request error',
networkAnomalyDescription:
'There is an abnormality in your network and you cannot connect to the server.',
networkAnomaly: 'network anomaly',
hint: 'hint',
},
fileManager: {
name: 'Name',
uploadDate: 'Upload Date',
knowledgeBase: 'Knowledge Base',
size: 'Size',
action: 'Action',
addToKnowledge: 'Link to Knowledge Base',
pleaseSelect: 'Please select',
newFolder: 'New Folder',
file: 'File',
uploadFile: 'Upload File',
directory: 'Directory',
uploadTitle: 'Click or drag file to this area to upload',
uploadDescription:
'Support for a single or bulk upload. Strictly prohibited from uploading company data or other banned files.',
local: 'Local uploads',
s3: 'S3 uploads',
preview: 'Preview',
fileError: 'File error',
uploadLimit:
'The file size cannot exceed 10M, and the total number of files cannot exceed 128',
destinationFolder: 'Destination folder',
},
flow: {
cite: 'Cite',
citeTip: 'citeTip',
name: 'Name',
nameMessage: 'Please input name',
description: 'Description',
examples: 'Examples',
to: 'To',
msg: 'Messages',
messagePlaceholder: 'message',
messageMsg: 'Please input message or delete this field.',
addField: 'Add option',
addMessage: 'Add message',
loop: 'Loop',
loopTip:
'Loop is the upper limit of the number of loops of the current component, when the number of loops exceeds the value of loop, it means that the component can not complete the current task, please re-optimize agent',
yes: 'Yes',
no: 'No',
key: 'Key',
componentId: 'Component ID',
add: 'Add',
operation: 'operation',
run: 'Run',
save: 'Save',
title: 'ID:',
beginDescription: 'This is where the flow begins.',
answerDescription: `A component that serves as the interface between human and bot, receiving user inputs and displaying the agent's responses.`,
retrievalDescription: `A component that retrieves information from specified knowledge bases (datasets). Ensure that the knowledge bases you select use the same embedding model.`,
generateDescription: `A component that prompts the LLM to generate responses. Ensure the prompt is set correctly.`,
categorizeDescription: `A component that uses the LLM to classify user inputs into predefined categories. Ensure you specify the name, description, and examples for each category, along with the corresponding next component.`,
relevantDescription: `A component that uses the LLM to assess whether the upstream output is relevant to the user's latest query. Ensure you specify the next component for each judge result.`,
rewriteQuestionDescription: `A component that rewrites a user query from the Interact component, based on the context of previous dialogues.`,
messageDescription:
"A component that sends out a static message. If multiple messages are supplied, it randomly selects one to send. Ensure its downstream is 'Interact', the interface component.",
keywordDescription: `A component that retrieves top N search results from user's input. Ensure the TopN value is set properly before use.`,
switchDescription: `A component that evaluates conditions based on the output of previous components and directs the flow of execution accordingly. It allows for complex branching logic by defining cases and specifying actions for each case or default action if no conditions are met.`,
wikipediaDescription: `A component that searches from wikipedia.org, using TopN to specify the number of search results. It supplements the existing knowledge bases.`,
promptText: `Please summarize the following paragraphs. Be careful with the numbers, do not make things up. Paragraphs as following:
{input}
The above is the content you need to summarize.`,
createGraph: 'Create agent',
createFromTemplates: 'Create from templates',
retrieval: 'Retrieval',
generate: 'Generate',
answer: 'Interact',
categorize: 'Categorize',
relevant: 'Relevant',
rewriteQuestion: 'Rewrite',
rewrite: 'Rewrite',
begin: 'Begin',
message: 'Message',
blank: 'Blank',
createFromNothing: 'Create your agent from scratch',
addItem: 'Add Item',
addSubItem: 'Add Sub Item',
nameRequiredMsg: 'Name is required',
nameRepeatedMsg: 'The name cannot be repeated',
keywordExtract: 'Keyword',
keywordExtractDescription: `A component that extracts keywords from a user query, with Top N specifying the number of keywords to extract.`,
baidu: 'Baidu',
baiduDescription: `A component that searches from baidu.com, using TopN to specify the number of search results. It supplements the existing knowledge bases.`,
duckDuckGo: 'DuckDuckGo',
duckDuckGoDescription:
'A component that searches from duckduckgo.com, allowing you to specify the number of search results using TopN. It supplements the existing knowledge bases.',
channel: 'Channel',
channelTip: `Perform text search or news search on the component's input`,
text: 'Text',
news: 'News',
messageHistoryWindowSize: 'Message window size',
messageHistoryWindowSizeTip:
'The window size of conversation history that needed to be seen by LLM. The larger the better. But be careful with the maximum content length of LLM.',
wikipedia: 'Wikipedia',
pubMed: 'PubMed',
pubMedDescription:
'A component that searches from https://pubmed.ncbi.nlm.nih.gov/, allowing you to specify the number of search results using TopN. It supplements the existing knowledge bases.',
email: 'Email',
emailTip:
'E-mail is a required field. You must input an E-mail address here.',
arXiv: 'ArXiv',
arXivDescription:
'A component that searches from https://arxiv.org/, allowing you to specify the number of search results using TopN. It supplements the existing knowledge bases.',
sortBy: 'Sort by',
submittedDate: 'Submitted date',
lastUpdatedDate: 'Last updated date',
relevance: 'Relevance',
google: 'Google',
googleDescription:
'A component that searches from https://www.google.com/, allowing you to specify the number of search results using TopN. It supplements the existing knowledge bases. Please note that this requires an API key from serpapi.com.',
bing: 'Bing',
bingDescription:
'A component that searches from https://www.bing.com/, allowing you to specify the number of search results using TopN. It supplements the existing knowledge bases. Please note that this requires an API key from microsoft.com.',
apiKey: 'API KEY',
country: 'Country&Region',
language: 'Language',
googleScholar: 'Google Scholar',
googleScholarDescription:
'A component that searches https://scholar.google.com/. You can use Top N to specify the number of search results.',
yearLow: 'Year low',
yearHigh: 'Year high',
patents: 'Patents',
data: 'Data',
deepL: 'DeepL',
deepLDescription:
'A component that gets more specialized translations from https://www.deepl.com/.',
authKey: 'Auth key',
sourceLang: 'Source language',
targetLang: 'Target language',
gitHub: 'GitHub',
gitHubDescription:
'A component that searches for repositories from https://github.com/. You can use Top N to specify the number of search results.',
baiduFanyi: 'BaiduFanyi',
baiduFanyiDescription:
'A component that gets specialized translations from https://fanyi.baidu.com/.',
appid: 'App ID',
secretKey: 'Secret key',
domain: 'Domain',
transType: 'Translation type',
baiduSecretKeyOptions: {
translate: 'General translation',
fieldtranslate: 'Field translation',
},
baiduDomainOptions: {
it: 'Information technology',
finance: 'Financial and economics',
machinery: 'Machinery manufacturing',
senimed: 'Biomedicine',
novel: 'Online literature',
academic: 'Academic paper',
aerospace: 'Aerospace',
wiki: 'Humanities and social sciences',
news: 'News and information',
law: 'Laws and regulations',
contract: 'Contract',
},
baiduSourceLangOptions: {
auto: 'Auto detect',
zh: 'Chinese',
en: 'English',
yue: 'Cantonese',
wyw: 'Classical Chinese',
jp: 'Japanese',
kor: 'Korean',
fra: 'French',
spa: 'Spanish',
th: 'Thai',
ara: 'Arabic',
ru: 'Russian',
pt: 'Portuguese',
de: 'German',
it: 'Italian',
el: 'Greek',
nl: 'Dutch',
pl: 'Polish',
bul: 'Bulgarian',
est: 'Estonian',
dan: 'Danish',
fin: 'Finnish',
cs: 'Czech',
rom: 'Romanian',
slo: 'Slovenian',
swe: 'Swedish',
hu: 'Hungarian',
cht: 'Traditional Chinese',
vie: 'Vietnamese',
},
qWeather: 'QWeather',
qWeatherDescription:
'A component that retrieves weather information, such as temperature and air quality, from https://www.qweather.com/.',
lang: 'Language',
type: 'Type',
webApiKey: 'Web API key',
userType: 'User type',
timePeriod: 'Time period',
qWeatherLangOptions: {
zh: 'Simplified Chinese',
'zh-hant': 'Traditional Chinese',
en: 'English',
de: 'German',
es: 'Spanish',
fr: 'French',
it: 'Italian',
ja: 'Japanese',
ko: 'Korean',
ru: 'Russian',
hi: 'Hindi',
th: 'Thai',
ar: 'Arabic',
pt: 'Portuguese',
bn: 'Bengali',
ms: 'Malay',
nl: 'Dutch',
el: 'Greek',
la: 'Latin',
sv: 'Swedish',
id: 'Indonesian',
pl: 'Polish',
tr: 'Turkish',
cs: 'Czech',
et: 'Estonian',
vi: 'Vietnamese',
fil: 'Filipino',
fi: 'Finnish',
he: 'Hebrew',
is: 'Icelandic',
nb: 'Norwegian',
},
qWeatherTypeOptions: {
weather: 'Weather forecast',
indices: 'Weather life index',
airquality: 'Air quality',
},
qWeatherUserTypeOptions: {
free: 'Free subscriber',
paid: 'Paid subscriber',
},
qWeatherTimePeriodOptions: {
now: 'Now',
'3d': '3 days',
'7d': '7 days',
'10d': '10 days',
'15d': '12 days',
'30d': '30 days',
},
publish: 'API',
exeSQL: 'ExeSQL',
exeSQLDescription:
'A component that performs SQL queries on a relational database, supporting querying from MySQL, PostgreSQL, or MariaDB.',
dbType: 'Database Type',
database: 'Database',
username: 'Username',
host: 'Host',
port: 'Port',
password: 'Password',
switch: 'Switch',
logicalOperator: 'Logical operator',
switchOperatorOptions: {
equal: 'Equals',
notEqual: 'Not equal',
gt: 'Greater than',
ge: 'Greater equal',
lt: 'Less than',
le: 'Less equal',
contains: 'Contains',
notContains: 'Not contains',
startWith: 'Starts with',
endWith: 'Ends with',
empty: 'Is empty',
notEmpty: 'Not empty',
},
switchLogicOperatorOptions: {
and: 'AND',
or: 'OR',
},
operator: 'Operator',
value: 'Value',
useTemplate: 'Use this template',
wenCai: 'WenCai',
queryType: 'Query type',
wenCaiDescription:
'A component that obtains financial information, including stock prices and funding news, from a wide range of financial websites.',
wenCaiQueryTypeOptions: {
stock: 'stock',
zhishu: 'index',
fund: 'fund',
hkstock: 'Hong Kong shares',
usstock: 'US stock market',
threeboard: 'New OTC Market',
conbond: 'Convertible Bond',
insurance: 'insurance',
futures: 'futures',
lccp: 'Financing',
foreign_exchange: 'Foreign currency',
},
akShare: 'AkShare',
akShareDescription:
'A component that obtains news about stocks from https://www.eastmoney.com/.',
yahooFinance: 'YahooFinance',
yahooFinanceDescription:
'A component that queries information about a publicly traded company using its ticker symbol.',
crawler: 'Web Crawler',
crawlerDescription:
'A component that crawls HTML source code from a specified URL.',
proxy: 'Proxy',
crawlerResultOptions: {
html: 'Html',
markdown: 'Markdown',
content: 'Content',
},
extractType: 'Extract type',
info: 'Info',
history: 'History',
financials: 'Financials',
balanceSheet: 'Balance sheet',
cashFlowStatement: 'Cash flow statement',
jin10: 'Jin10',
jin10Description:
'A component that retrieves financial information from the Jin10 Open Platform, including news updates, calendars, quotes, and references.',
flashType: 'Flash type',
filter: 'Filter',
contain: 'Contain',
calendarType: 'Calendar type',
calendarDatashape: 'Calendar datashape',
symbolsDatatype: 'Symbols datatype',
symbolsType: 'Symbols type',
jin10TypeOptions: {
flash: 'Quick News',
calendar: 'Calendar',
symbols: 'quotes',
news: 'reference',
},
jin10FlashTypeOptions: {
'1': 'Market News',
'2': ' Futures News',
'3': 'US-Hong Kong News',
'4': 'A-Share News',
'5': 'Commodities & Forex News',
},
jin10CalendarTypeOptions: {
cj: 'Macroeconomic Data Calendar',
qh: ' Futures Calendar',
hk: 'Hong Kong Stock Market Calendar',
us: 'US Stock Market Calendar',
},
jin10CalendarDatashapeOptions: {
data: 'Data',
event: ' Event',
holiday: 'Holiday',
},
jin10SymbolsTypeOptions: {
GOODS: 'Commodity Quotes',
FOREX: ' Forex Quotes',
FUTURE: 'International Market Quotes',
CRYPTO: 'Cryptocurrency Quotes',
},
jin10SymbolsDatatypeOptions: {
symbols: 'Commodity List',
quotes: ' Latest Market Quotes',
},
concentrator: 'Concentrator',
concentratorDescription:
'A component that receives the output from the upstream component and passes it on as input to the downstream components.',
tuShare: 'TuShare',
tuShareDescription:
'A component that obtains financial news briefs from mainstream financial websites, aiding industry and quantitative research.',
tuShareSrcOptions: {
sina: 'Sina',
wallstreetcn: 'wallstreetcn',
'10jqka': 'Straight flush',
eastmoney: 'Eastmoney',
yuncaijing: 'YUNCAIJING',
fenghuang: 'FENGHUANG',
jinrongjie: 'JRJ',
},
token: 'Token',
src: 'Source',
startDate: 'Start date',
endDate: 'End date',
keyword: 'Keyword',
note: 'Note',
noteDescription: 'Note',
notePlaceholder: 'Please enter a note',
invoke: 'Invoke',
invokeDescription: `A component capable of calling remote services, using other components' outputs or constants as inputs.`,
url: 'Url',
method: 'Method',
timeout: 'Timeout',
headers: 'Headers',
cleanHtml: 'Clean HTML',
cleanHtmlTip:
'If the response is HTML formatted and only the primary content wanted, please toggle it on.',
reference: 'Reference',
input: 'Input',
output: 'Output',
parameter: 'Parameter',
howUseId: 'How to use agent ID?',
content: 'Content',
operationResults: 'Operation Results',
autosaved: 'Autosaved',
optional: 'Optional',
pasteFileLink: 'Paste file link',
testRun: 'Test Run',
template: 'Template',
templateDescription:
'A component that formats the output of other components.1. Supports Jinja2 templates, will first convert the input to an object and then render the template, 2. Simultaneously retains the original method of using {parameter} string replacement',
emailComponent: 'Email',
emailDescription: 'Send an email to a specified address.',
smtpServer: 'SMTP Server',
smtpPort: 'SMTP Port',
senderEmail: 'Sender Email',
authCode: 'Authorization Code',
senderName: 'Sender Name',
toEmail: 'Recipient Email',
ccEmail: 'CC Email',
emailSubject: 'Subject',
emailContent: 'Content',
smtpServerRequired: 'Please input SMTP server address',
senderEmailRequired: 'Please input sender email',
authCodeRequired: 'Please input authorization code',
toEmailRequired: 'Please input recipient email',
emailContentRequired: 'Please input email content',
emailSentSuccess: 'Email sent successfully',
emailSentFailed: 'Failed to send email',
dynamicParameters: 'Dynamic Parameters',
jsonFormatTip:
'Upstream component should provide JSON string in following format:',
toEmailTip: 'to_email: Recipient email (Required)',
ccEmailTip: 'cc_email: CC email (Optional)',
subjectTip: 'subject: Email subject (Optional)',
contentTip: 'content: Email content (Optional)',
jsonUploadTypeErrorMessage: 'Please upload json file',
jsonUploadContentErrorMessage: 'json file error',
iteration: 'Iteration',
iterationDescription: `This component firstly split the input into array by "delimiter".
Perform the same operation steps on the elements in the array in sequence until all results are output, which can be understood as a task batch processor.
For example, within the long text translation iteration node, if all content is input to the LLM node, the single conversation limit may be reached. The upstream node can first split the long text into multiple fragments, and cooperate with the iterative node to perform batch translation on each fragment to avoid reaching the LLM message limit for a single conversation.`,
delimiterTip: `
This delimiter is used to split the input text into several text pieces echo of which will be performed as input item of each iteration.`,
delimiterOptions: {
comma: 'Comma',
lineBreak: 'Line break',
tab: 'Tab',
underline: 'Underline',
diagonal: 'Diagonal',
minus: 'Minus',
semicolon: 'Semicolon',
},
addVariable: 'Add variable',
variableSettings: 'Variable settings',
globalVariables: 'Global variables',
systemPrompt: 'System prompt',
addCategory: 'Add category',
categoryName: 'Category name',
nextStep: 'Next step',
},
footer: {
profile: 'All rights reserved @ React',
},
layout: {
file: 'file',
knowledge: 'knowledge',
chat: 'chat',
},
},
};
|