File size: 57,661 Bytes
88e5a61
 
 
 
2262506
88e5a61
 
 
 
 
 
 
 
 
 
 
 
6fb2244
74ade83
 
88e5a61
 
 
b916b29
 
8d43c11
9426215
d13f144
cb33b9e
ba91369
17d873a
 
79cd49c
a2c2382
 
f859b0d
4beec7d
85a7d1b
 
88e5a61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0202117
 
7c6cf75
e094004
e3239a2
88e5a61
 
 
dfc220f
88e5a61
 
 
 
8e109c7
dfc220f
88e5a61
 
 
 
 
 
51db3f9
88e5a61
 
 
 
7346a8e
88e5a61
 
 
 
614a413
88e5a61
 
 
e52051a
 
88e5a61
 
28e0efa
 
 
88e5a61
02e5242
88e5a61
 
e618152
d594e0f
88e5a61
e618152
88e5a61
02e5242
88e5a61
4496b5e
 
 
88e5a61
 
4496b5e
88e5a61
4f018d6
 
88e5a61
 
 
 
 
 
f28ed6a
88e5a61
 
 
f28ed6a
51db3f9
88e5a61
a3e5fd8
88e5a61
 
f28ed6a
88e5a61
 
 
 
 
 
 
 
 
5769711
e52051a
 
28e0efa
d594e0f
799f66f
d594e0f
 
f28c040
bec7e87
7346a8e
0b0058a
ee64c42
305b8c0
7346a8e
305b8c0
7346a8e
b1e1904
26d72b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51db3f9
 
88e5a61
 
 
7346a8e
88e5a61
 
 
 
 
 
 
 
 
 
 
7346a8e
88e5a61
305b8c0
88e5a61
305b8c0
88e5a61
7346a8e
88e5a61
 
 
 
 
 
 
 
 
305b8c0
88e5a61
 
305b8c0
 
88e5a61
 
 
8b7269c
88e5a61
8b7269c
88e5a61
8b7269c
88e5a61
 
305b8c0
88e5a61
c058dac
4d5d480
88e5a61
8b7269c
 
88e5a61
8b7269c
4d5d480
8b7269c
 
 
 
ecfd212
 
 
 
 
8b7269c
ecfd212
 
8b7269c
ecfd212
 
8b7269c
ecfd212
 
 
 
 
 
 
 
8b7269c
88e5a61
8b7269c
88e5a61
 
8b7269c
 
88e5a61
8b7269c
 
 
 
 
 
88e5a61
 
 
 
 
 
4d5d480
 
88e5a61
4d5d480
88e5a61
 
 
 
4d5d480
88e5a61
4d5d480
88e5a61
2b252d0
 
7346a8e
02e5242
4d5d480
c0be17f
 
 
 
 
 
 
 
 
 
980e3c4
 
7346a8e
980e3c4
 
 
 
 
bf38604
980e3c4
 
 
 
 
 
 
 
 
 
 
92890f8
4496b5e
9bf66a3
7346a8e
c0be17f
85a7d1b
 
c0be17f
 
4b36338
 
 
 
 
 
 
 
 
 
 
 
 
c5da52f
 
51db3f9
 
 
 
 
 
 
 
 
 
 
88e5a61
 
 
 
 
4496b5e
 
 
88e5a61
 
 
 
 
 
 
8e109c7
 
9e42ef1
 
b6e253d
c4edd97
88e5a61
 
38eebf9
5769711
88e5a61
 
 
 
 
 
28e0efa
88e5a61
 
dfc220f
88e5a61
7c07000
88e5a61
 
 
 
dfc220f
0812124
88e5a61
dfc220f
28e0efa
88e5a61
0b31353
 
88e5a61
 
 
 
 
 
 
dfc220f
88e5a61
dfc220f
88e5a61
5461e28
88e5a61
7b381b0
88e5a61
7b381b0
88e5a61
 
 
 
 
 
 
799f66f
88e5a61
 
b9c5b85
88e5a61
 
 
5461e28
28e0efa
 
88e5a61
 
28e0efa
 
88e5a61
 
28e0efa
 
a3e5fd8
99ac12c
 
28e0efa
dfc220f
2df5d5b
 
f850783
b916b29
 
 
 
 
 
 
 
 
ed12544
7651eb4
b916b29
f850783
b916b29
 
 
4beec7d
8d43c11
7ba250b
 
 
 
 
4beec7d
 
 
dfc220f
d3b461d
 
d237d49
eedc75d
 
8ee6bdd
 
dfc220f
6eec14a
52a51dc
589b0da
1c7ab64
dfc220f
f5ebe5e
60788d3
51db3f9
 
 
446c54c
 
88e5a61
 
 
 
99ac12c
 
a3e5fd8
99ac12c
 
88e5a61
 
 
28e0efa
ed12544
88e5a61
bf1e3ff
88e5a61
f850783
88e5a61
 
 
 
 
 
 
 
 
28e0efa
88e5a61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e92bd36
 
88e5a61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5769711
88e5a61
 
28e0efa
d594e0f
e10ed78
 
 
88e5a61
 
21cf732
 
a70b412
e693841
21cf732
 
 
 
 
 
e693841
e10ed78
6ec7653
d2e955e
 
 
 
 
63f5b44
 
 
 
 
 
 
 
 
 
 
 
 
 
efaa250
 
 
 
6ec7653
 
 
 
9e27b49
 
 
4496b5e
 
e6abe77
 
 
 
06a1df0
 
 
 
 
e10ed78
 
 
 
4496b5e
e10ed78
 
a70b412
 
 
 
 
 
 
 
 
777daee
fa680e0
 
17d873a
 
 
 
834690f
 
17d873a
 
2262506
e5dbc25
 
88e5a61
 
 
 
 
 
 
 
 
 
 
 
7c6cf75
88e5a61
 
 
 
 
 
 
 
 
 
930da24
88e5a61
 
 
 
 
 
 
 
 
 
 
7c6cf75
 
 
 
 
 
18af531
7c6cf75
 
 
 
 
 
 
 
 
 
8d2a400
ebf2bde
99d136b
 
ba91369
7c6cf75
838db53
 
 
 
 
 
 
 
1157a9f
ed19e93
 
0812124
f9e19e4
457df3d
ebd60e1
 
64b1da0
 
7b381b0
8aa83b1
4a1cf8b
 
12f28d5
 
fa5e9f6
5c37eb6
 
799f66f
5c37eb6
 
 
8d992fe
b2b0160
cb6b883
a732a09
2082761
bc50356
67a5f12
 
 
e094004
2962077
38eebf9
 
5000eb5
38eebf9
 
970e973
38eebf9
1157a9f
 
38eebf9
f9e19e4
1157a9f
8aa83b1
17cd183
 
b25a0c6
4496b5e
6e0d24d
bc50356
6e0d24d
 
bc50356
6e0d24d
fbb1e63
 
 
86d0fad
 
 
5d3a620
77dbe3e
4138aee
bc50356
77dbe3e
 
bc50356
e878c81
4138aee
bc50356
942993f
 
 
 
95ccaf9
4138aee
bc50356
95ccaf9
a2c2382
bc50356
ed12544
0202117
95ccaf9
99d136b
 
ac4d1d4
99d136b
 
 
 
284d945
 
ac4d1d4
284d945
 
 
2c5f7df
b9c5b85
ac4d1d4
4c2d648
 
ac4d1d4
4496b5e
4c2d648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42dbb1f
 
ac4d1d4
42dbb1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb0c846
0109a6b
 
ac4d1d4
0109a6b
 
 
 
 
 
99e5e05
2e208d4
6b7630c
b88bbad
 
6b7630c
 
 
 
 
 
b88bbad
 
 
6b7630c
 
 
51db3f9
 
6b7630c
8aa83b1
 
c33b05f
55e7b7a
 
 
ac4d1d4
55e7b7a
 
 
 
 
 
 
 
 
 
 
 
 
6dc139b
 
ac4d1d4
c54177d
f2de30c
ac4d1d4
13bc594
 
ac4d1d4
13bc594
 
 
 
 
 
c4fcec1
c54177d
 
 
 
 
f2de30c
 
ac4d1d4
f2de30c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5000eb5
 
cdbe301
739dd81
 
ac4d1d4
739dd81
 
 
 
 
 
 
 
 
 
 
 
 
 
cd85d9e
 
 
79cd49c
414b804
79cd49c
 
 
 
eadfd19
 
 
a2c2382
 
0a9da14
eadfd19
f5ebe5e
0a9da14
 
4928b00
f859b0d
 
 
e618152
 
0e469cf
d11c358
ac4d1d4
d11c358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d4da5b
 
2bdad3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaea411
 
 
19737f9
efda1c9
 
 
838db53
88e5a61
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
export default {
  translation: {
    common: {
      delete: 'Delete',
      deleteModalTitle: 'Are you sure to delete this item?',
      ok: 'Yes',
      cancel: 'No',
      total: 'Total',
      rename: 'Rename',
      name: 'Name',
      save: 'Save',
      namePlaceholder: 'Please input name',
      next: 'Next',
      create: 'Create',
      edit: 'Edit',
      upload: 'Upload',
      english: 'English',
      portugueseBr: 'Portuguese (Brazil)',
      chinese: 'Simplified Chinese',
      traditionalChinese: 'Traditional Chinese',
      language: 'Language',
      languageMessage: 'Please input your language!',
      languagePlaceholder: 'select your language',
      copy: 'Copy',
      copied: 'Copied',
      comingSoon: 'Coming soon',
      download: 'Download',
      close: 'Close',
      preview: 'Preview',
      move: 'Move',
      warn: 'Warn',
      action: 'Action',
      s: 'S',
      pleaseSelect: 'Please select',
      pleaseInput: 'Please input',
      submit: 'Submit',
      embedIntoSite: 'Embed into webpage',
      previousPage: 'Previous',
      nextPage: 'Next',
    },
    login: {
      login: 'Sign in',
      signUp: 'Sign up',
      loginDescription: 'We’re so excited to see you again!',
      registerDescription: 'Glad to have you on board!',
      emailLabel: 'Email',
      emailPlaceholder: 'Please input email',
      passwordLabel: 'Password',
      passwordPlaceholder: 'Please input password',
      rememberMe: 'Remember me',
      signInTip: 'Don’t have an account?',
      signUpTip: 'Already have an account?',
      nicknameLabel: 'Nickname',
      nicknamePlaceholder: 'Please input nickname',
      register: 'Create an account',
      continue: 'Continue',
      title: 'Start building your smart assistants.',
      description:
        'Sign up for free to explore top RAG technology. Create knowledge bases and AIs to empower your business.',
      review: 'from 500+ reviews',
    },
    header: {
      knowledgeBase: 'Knowledge Base',
      chat: 'Chat',
      register: 'Register',
      signin: 'Sign in',
      home: 'Home',
      setting: 'User settings',
      logout: 'Log out',
      fileManager: 'File Management',
      flow: 'Agent',
      search: 'Search',
    },
    knowledgeList: {
      welcome: 'Welcome back',
      description: 'Which knowledge bases will you use today?',
      createKnowledgeBase: 'Create knowledge base',
      name: 'Name',
      namePlaceholder: 'Please input name!',
      doc: 'Docs',
      searchKnowledgePlaceholder: 'Search',
      noMoreData: `That's all. Nothing more.`,
    },
    knowledgeDetails: {
      dataset: 'Dataset',
      testing: 'Retrieval testing',
      files: 'files',
      configuration: 'Configuration',
      knowledgeGraph: 'Knowledge graph',
      name: 'Name',
      namePlaceholder: 'Please input name!',
      doc: 'Docs',
      datasetDescription:
        '😉 Please wait for your file to finish parsing before starting an AI-powered chat.',
      addFile: 'Add file',
      searchFiles: 'Search your files',
      localFiles: 'Local files',
      emptyFiles: 'Create empty file',
      webCrawl: 'Web Crawl',
      chunkNumber: 'Chunk Number',
      uploadDate: 'Upload Date',
      chunkMethod: 'Chunk Method',
      enabled: 'Enable',
      disabled: 'Disable',
      action: 'Action',
      parsingStatus: 'Parsing Status',
      processBeginAt: 'Begin at',
      processDuration: 'Duration',
      progressMsg: 'Progress',
      testingDescription:
        'Conduct a retrieval test to check if RAGFlow can recover the intended content for the LLM.',
      similarityThreshold: 'Similarity threshold',
      similarityThresholdTip:
        'RAGFlow employs either a combination of weighted keyword similarity and weighted vector cosine similarity, or a combination of weighted keyword similarity and weighted reranking score during retrieval. This parameter sets the threshold for similarities between the user query and chunks. Any chunk with a similarity score below this threshold will be excluded from the results.',
      vectorSimilarityWeight: 'Keywords similarity weight',
      vectorSimilarityWeightTip:
        'This sets the weight of keyword similarity in the combined similarity score, either used with vector cosine similarity or with reranking score. The total of the two weights must equal 1.0.',
      testText: 'Test text',
      testTextPlaceholder: 'Input your question here!',
      testingLabel: 'Testing',
      similarity: 'Hybrid similarity',
      termSimilarity: 'Term similarity',
      vectorSimilarity: 'Vector similarity',
      hits: 'Hits',
      view: 'View',
      filesSelected: 'Files selected',
      upload: 'Upload',
      run: 'Parse',
      runningStatus0: 'UNParsed',
      runningStatus1: 'Parsing',
      runningStatus2: 'CANCEL',
      runningStatus3: 'SUCCESS',
      runningStatus4: 'FAIL',
      pageRanges: 'Page Ranges',
      pageRangesTip:
        'Range of pages to be parsed; pages outside this range will not be processed.',
      fromPlaceholder: 'from',
      fromMessage: 'Missing start page number',
      toPlaceholder: 'to',
      toMessage: 'Missing end page number (excluded)',
      layoutRecognize: 'Layout recognition & OCR',
      layoutRecognizeTip:
        'Use visual models for layout analysis to better understand the structure of the document and effectively locate document titles, text blocks, images, and tables. If disabled, only the plain text in the PDF will be retrieved.',
      taskPageSize: 'Task page size',
      taskPageSizeMessage: 'Please input your task page size!',
      taskPageSizeTip: `During layout recognition, a PDF file is split into chunks and processed in parallel to increase processing speed. This parameter sets the size of each chunk. A larger chunk size reduces the likelihood of splitting continuous text between pages.`,
      addPage: 'Add page',
      greaterThan: 'The current value must be greater than to!',
      greaterThanPrevious:
        'The current value must be greater than the previous to!',
      selectFiles: 'Select files',
      changeSpecificCategory: 'Change specific category',
      uploadTitle: 'Click or drag file to this area to upload',
      uploadDescription:
        'Support for a single or bulk upload. Strictly prohibited from uploading company data or other banned files.',
      chunk: 'Chunk',
      bulk: 'Bulk',
      cancel: 'Cancel',
      rerankModel: 'Rerank model',
      rerankPlaceholder: 'Please select',
      rerankTip: `If left empty, RAGFlow will use a combination of weighted keyword similarity and weighted vector cosine similarity; if a rerank model is selected, a weighted reranking score will replace the weighted vector cosine similarity. Please be aware that using a rerank model will significantly increase the system's response time.`,
      topK: 'Top-K',
      topKTip: `K chunks will be fed into rerank models.`,
      delimiter: `Delimiter`,
      delimiterTip:
        'A delimiter or separator can consist of one or multiple special characters. If it is multiple characters, ensure they are enclosed in backticks( ``). For example, if you configure your delimiters like this: \n`##`;, then your texts will be separated at line breaks, double hash symbols (##), or semicolons.',
      html4excel: 'Excel to HTML',
      html4excelTip: `When enabled, the spreadsheet will be parsed into HTML tables, and at most 256 rows for one table. Otherwise, it will be parsed into key-value pairs by row.`,
      autoKeywords: 'Auto-keyword',
      autoKeywordsTip: `Automatically extract N keywords for each chunk to increase their ranking for queries containing those keywords. You can check or update the added keywords for a chunk from the chunk list. Be aware that extra tokens will be consumed by the LLM specified in 'System model settings'.`,
      autoQuestions: 'Auto-question',
      autoQuestionsTip: `Automatically extract N questions for each chunk to increase their ranking for queries containing those questions. You can check or update the added questions for a chunk from the chunk list. This feature will not disrupt the chunking process if an error occurs, except that it may add an empty result to the original chunk. Be aware that extra tokens will be consumed by the LLM specified in 'System model settings'.`,
      redo: 'Do you want to clear the existing {{chunkNum}} chunks?',
      setMetaData: 'Set Meta Data',
      pleaseInputJson: 'Please enter JSON',
      documentMetaTips: `<p>The meta data is in Json format(it's not searchable). It will be added into prompt for LLM if any chunks of this document are included in the prompt.</p>
<p>Examples:</p>
<b>The meta data is:</b><br>
<code>
  {
      "Author": "Alex Dowson",
      "Date": "2024-11-12"
  }
</code><br>
<b>The prompt will be:</b><br>
<p>Document: the_name_of_document</p>
<p>Author: Alex Dowson</p>
<p>Date: 2024-11-12</p>
<p>Relevant fragments as following:</p>
<ul>
<li>  Here is the chunk content....</li>
<li>  Here is the chunk content....</li>
</ul>
`,
      metaData: 'Meta data',
      deleteDocumentConfirmContent:
        'The document is associated with the knowledge graph. After deletion, the related node and relationship information will be deleted, but the graph will not be updated immediately. The update graph action is performed during the process of parsing the new document that carries the knowledge graph extraction task.',
    },
    knowledgeConfiguration: {
      titleDescription:
        'Update your knowledge base configuration here, particularly the chunk method.',
      name: 'Knowledge base name',
      photo: 'Knowledge base photo',
      description: 'Description',
      language: 'Language',
      languageMessage: 'Please input your language!',
      languagePlaceholder: 'Please input your language!',
      permissions: 'Permissions',
      embeddingModel: 'Embedding model',
      chunkTokenNumber: 'Chunk token number',
      chunkTokenNumberMessage: 'Chunk token number is required',
      embeddingModelTip:
        'The model that converts chunks into embeddings. It cannot be changed once the knowledge base has chunks. To switch to a different embedding model, you must delete all existing chunks in the knowledge base.',
      permissionsTip:
        "If set to 'Team', all team members will be able to manage the knowledge base.",
      chunkTokenNumberTip:
        'It sets the token threshold for a chunk. A paragraph with fewer tokens than this threshold will be combined with the following paragraph until the token count exceeds the threshold, at which point a chunk is created.',
      chunkMethod: 'Chunk method',
      chunkMethodTip: 'View the tips on the right.',
      upload: 'Upload',
      english: 'English',
      chinese: 'Chinese',
      embeddingModelPlaceholder: 'Please select a embedding model',
      chunkMethodPlaceholder: 'Please select a chunk method',
      save: 'Save',
      me: 'Only me',
      team: 'Team',
      cancel: 'Cancel',
      methodTitle: 'Chunk method description',
      methodExamples: 'Examples',
      methodExamplesDescription:
        'The following screenshots are provided for clarity.',
      dialogueExamplesTitle: 'Dialogue examples',
      methodEmpty:
        'This will display a visual explanation of the knowledge base categories',
      book: `<p>Supported file formats are <b>DOCX</b>, <b>PDF</b>, <b>TXT</b>.</p><p>
      For each book in PDF, please set the <i>page ranges</i> to remove unwanted information and reduce analysis time.</p>`,
      laws: `<p>Supported file formats are <b>DOCX</b>, <b>PDF</b>, <b>TXT</b>.</p><p>
      Legal documents typically follow a rigorous writing format. We use text feature to identify split point. 
      </p><p>
      The chunk has a granularity consistent with 'ARTICLE', ensuring all upper level text is included in the chunk.
      </p>`,
      manual: `<p>Only <b>PDF</b> is supported.</p><p>
      We assume that the manual has a hierarchical section structure, using the lowest section titles as basic unit for chunking documents. Therefore, figures and tables in the same section will not be separated, which may result in larger chunk sizes.
      </p>`,
      naive: `<p>Supported file formats are <b>DOCX, EXCEL, PPT, IMAGE, PDF, TXT, MD, JSON, EML, HTML</b>.</p>
      <p>This method chunks files using a 'naive' method: </p>
      <p>
      <li>Use vision detection model to split the texts into smaller segments.</li>
      <li>Then, combine adjacent segments until the token count exceeds the threshold specified by 'Chunk token number', at which point a chunk is created.</li></p>`,
      paper: `<p>Only <b>PDF</b> file is supported.</p><p>
      Papers will be split by section, such as <i>abstract, 1.1, 1.2</i>. </p><p>
      This approach enables the LLM to summarize the paper more effectively and to provide more comprehensive, understandable responses. 
      However, it also increases the context for AI conversations and adds to the computational cost for the LLM. So during a conversation, consider reducing the value of ‘<b>topN</b>’.</p>`,
      presentation: `<p>Supported file formats are <b>PDF</b>, <b>PPTX</b>.</p><p>
      Every page in the slides is treated as a chunk, with its thumbnail image stored.</p><p>
      <i>This chunk method is automatically applied to all uploaded PPT files, so you do not need to specify it manually.</i></p>`,
      qa: `
      <p>
      This chunk method supports <b>EXCEL</b> and <b>CSV/TXT</b> file formats.
    </p>
    <li>
      If a file is in <b>Excel</b> format, it should contain two columns
      without headers: one for questions and the other for answers, with the
      question column preceding the answer column. Multiple sheets are
      acceptable, provided the columns are properly structured.
    </li>
    <li>
      If a file is in <b>CSV/TXT</b> format, it must be UTF-8 encoded with TAB as the delimiter to separate questions and answers.
    </li>
    <p>
      <i>
        Lines of texts that fail to follow the above rules will be ignored, and
        each Q&A pair will be considered a distinct chunk.
      </i>
    </p>
      `,
      resume: `<p>Supported file formats are <b>DOCX</b>, <b>PDF</b>, <b>TXT</b>.
      </p><p>
      Résumés of various forms are parsed and organized into structured data to facilitate candidate search for recruiters.
      </p>
      `,
      table: `<p>Supported file formats are <b>EXCEL</b> and <b>CSV/TXT</b>.</p><p>
      Here're some prerequisites and tips:
      <ul>
    <li>For CSV or TXT file, the delimiter between columns must be <em><b>TAB</b></em>.</li>
    <li>The first row must be column headers.</li>
    <li>Column headers must be meaningful terms to aid your LLM's understanding.
    It is good practice to juxtapose synonyms separated by a slash <i>'/'</i> and to enumerate values using brackets, for example: <i>'Gender/Sex (male, female)'</i>.<p>
    Here are some examples of headers:<ol>
        <li>supplier/vendor<b>'TAB'</b>Color (Yellow, Blue, Brown)<b>'TAB'</b>Sex/Gender (male, female)<b>'TAB'</b>size (M, L, XL, XXL)</li>
        </ol>
        </p>
    </li>
    <li>Every row in table will be treated as a chunk.</li>
    </ul>`,
      picture: `
    <p>Image files are supported, with video support coming soon.</p><p>
    This method employs an OCR model to extract texts from images.
    </p><p>
    If the text extracted by the OCR model is deemed insufficient, a specified visual LLM will be used to provide a description of the image.
    </p>`,
      one: `
    <p>Supported file formats are <b>DOCX, EXCEL, PDF, TXT</b>.
    </p><p>
    This method treats each document in its entirety as a chunk.
    </p><p>
    Applicable when you require the LLM to summarize the entire document, provided it can handle that amount of context length.
    </p>`,
      knowledgeGraph: `<p>Supported file formats are <b>DOCX, EXCEL, PPT, IMAGE, PDF, TXT, MD, JSON, EML</b>

<p>This approach chunks files using the 'naive'/'General' method. It splits a document into segments and then combines adjacent segments until the token count exceeds the threshold specified by 'Chunk token number', at which point a chunk is created.</p>
<p>The chunks are then fed to the LLM to extract entities and relationships for a knowledge graph and a mind map.</p>
<p>Ensure that you set the <b>Entity types</b>.</p>`,
      tag: `<p>Knowlege base using 'Tag' as a chunking method is supposed to be used by other knowledge bases to add tags to their chunks, queries to which will also be with tags too.</p>
<p>Knowlege base using 'Tag' as a chunking method is <b>NOT</b> supposed to be involved in RAG procedure.</p>
<p>The chunks in this knowledge base are examples of tags, which demonstrate the entire tag set and the relevance between chunk and tags.</p>

<p>This chunk method supports <b>EXCEL</b> and <b>CSV/TXT</b> file formats.</p>
<p>If a file is in <b>Excel</b> format, it should contain two columns without headers: one for content and the other for tags, with the content column preceding the tags column. Multiple sheets are acceptable, provided the columns are properly structured.</p>
<p>If a file is in <b>CSV/TXT</b> format, it must be UTF-8 encoded with TAB as the delimiter to separate content and tags.</p>
<p>In tags column, there're English <b>comma</b> between tags.</p>
<i>Lines of texts that fail to follow the above rules will be ignored, and each  pair will be considered a distinct chunk.</i>
`,
      useRaptor: 'Use RAPTOR to enhance retrieval',
      useRaptorTip:
        'Recursive Abstractive Processing for Tree-Organized Retrieval, see https://huggingface.co/papers/2401.18059 for more information.',
      prompt: 'Prompt',
      promptTip: 'LLM prompt used for summarization.',
      promptMessage: 'Prompt is required',
      promptText: `Please summarize the following paragraphs. Be careful with the numbers, do not make things up. Paragraphs as following:
      {cluster_content}
The above is the content you need to summarize.`,
      maxToken: 'Max token',
      maxTokenTip: 'Maximum token number for summarization.',
      maxTokenMessage: 'Max token is required',
      threshold: 'Threshold',
      thresholdTip: 'The bigger the threshold is the less cluster will be.',
      thresholdMessage: 'Threshold is required',
      maxCluster: 'Max cluster',
      maxClusterTip: 'Maximum cluster number.',
      maxClusterMessage: 'Max cluster is required',
      randomSeed: 'Random seed',
      randomSeedMessage: 'Random seed is required',
      entityTypes: 'Entity types',
      vietnamese: 'Vietnamese',
      pageRank: 'Page rank',
      pageRankTip: `This increases the relevance score of the knowledge base. Its value will be added to the relevance score of all retrieved chunks from this knowledge base. Useful when you are searching within multiple knowledge bases and wanting to assign a higher pagerank score to a specific one.`,
      tagName: 'Tag',
      frequency: 'Frequency',
      searchTags: 'Search tags',
      tagCloud: 'Cloud',
      tagTable: 'Table',
      tagSet: 'Tag set',
      tagSetTip: `
     <p> Selecting the 'Tag' knowledge bases helps to tag every chunks. </p>
<p>Query to those chunks will also be with tags too.</p>
This procedure will improve precision of retrieval by adding more information to the dataset, especially when there's a large set of chunks.
<p>Difference between tags and keywords:</p>
<ul>
  <li>Tag is a close set which is defined and manipulated by user while keyword is an open set.</li>
  <li>You need to upload tag sets with samples prior to use.</li>
  <li>Keywords are generated by LLM which is expensive and time consuming.</li>
</ul>
      `,
      topnTags: 'Top-N Tags',
      tags: 'Tags',
      addTag: 'Add tag',
      useGraphRag: 'Extract knowledge graph',
      useGraphRagTip:
        'After files being chunked, all the chunks will be used for knowlege graph generation which helps inference of multi-hop and complex problems a lot.',
      graphRagMethod: 'Method',
      graphRagMethodTip: `Light: the entity and relation extraction prompt is from GitHub - HKUDS/LightRAG: "LightRAG: Simple and Fast Retrieval-Augmented Generation"</br>
        General: the entity and relation extraction prompt is from GitHub - microsoft/graphrag: A modular graph-based Retrieval-Augmented Generation (RAG) system`,
      resolution: 'Entity resolution',
      resolutionTip: `The resolution procedure would merge entities with the same meaning together which allows the graph conciser and more accurate. Entities as following should be merged:  President Trump, Donald Trump, Donald J. Trump, Donald John Trump`,
      community: 'Community reports generation',
      communityTip:
        'Chunks are clustered into hierarchical communities with entities and relationships connecting each segment up through higher levels of abstraction. We then use an LLM to generate a summary of each community, known as a community report. More: https://www.microsoft.com/en-us/research/blog/graphrag-improving-global-search-via-dynamic-community-selection/',
    },
    chunk: {
      chunk: 'Chunk',
      bulk: 'Bulk',
      selectAll: 'Select All',
      enabledSelected: 'Enable selected',
      disabledSelected: 'Disable selected',
      deleteSelected: 'Delete selected',
      search: 'Search',
      all: 'All',
      enabled: 'Enabled',
      disabled: 'Disabled',
      keyword: 'Keyword',
      function: 'Function',
      chunkMessage: 'Please input value!',
      full: 'Full text',
      ellipse: 'Ellipse',
      graph: 'Knowledge graph',
      mind: 'Mind map',
      question: 'Question',
      questionTip: `If there're given questions, the embedding of the chunk will be based on them.`,
    },
    chat: {
      newConversation: 'New conversation',
      createAssistant: 'Create an Assistant',
      assistantSetting: 'Assistant Setting',
      promptEngine: 'Prompt Engine',
      modelSetting: 'Model Setting',
      chat: 'Chat',
      newChat: 'New chat',
      send: 'Send',
      sendPlaceholder: 'Message the assistant...',
      chatConfiguration: 'Chat Configuration',
      chatConfigurationDescription:
        ' Set up a chat assistant dedicated to your selected knowledge bases here! 💕',
      assistantName: 'Assistant name',
      assistantNameMessage: 'Assistant name is required',
      namePlaceholder: 'e.g. Resume Jarvis',
      assistantAvatar: 'Assistant avatar',
      language: 'Language',
      emptyResponse: 'Empty response',
      emptyResponseTip: `Set this as a response if no results are retrieved from the knowledge bases for your query, or leave this field blank to allow the LLM to improvise when nothing is found.`,
      setAnOpener: 'Opening greeting',
      setAnOpenerInitial: `Hi! I'm your assistant, what can I do for you?`,
      setAnOpenerTip: 'Set an opening greeting for users.',
      knowledgeBases: 'Knowledge bases',
      knowledgeBasesMessage: 'Please select',
      knowledgeBasesTip:
        'Select the knowledge bases to associate with this chat assistant.',
      system: 'System',
      systemInitialValue: `You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence "The answer you are looking for is not found in the knowledge base!" Answers need to consider chat history.
      Here is the knowledge base:
      {knowledge}
      The above is the knowledge base.`,
      systemMessage: 'Please input!',
      systemTip:
        'Your prompts or instructions for the LLM, including but not limited to its role, the desired length, tone, and language of its answers.',
      topN: 'Top N',
      topNTip: `Not all chunks with similarity score above the 'similarity threshold' will be sent to the LLM. This selects 'Top N' chunks from the retrieved ones.`,
      variable: 'Variable',
      variableTip: `Variables can assist in developing more flexible strategies, particularly when you are using our chat assistant management APIs. These variables will be used by 'System' as part of the prompts for the LLM. The variable {knowledge} is a reserved special variable representing your selected knowledge base(s), and all variables should be enclosed in curly braces {}.`,
      add: 'Add',
      key: 'Key',
      optional: 'Optional',
      operation: 'Operation',
      model: 'Model',
      modelTip: 'Large language chat model',
      modelMessage: 'Please select!',
      freedom: 'Freedom',
      improvise: 'Improvise',
      precise: 'Precise',
      balance: 'Balance',
      freedomTip: `A shortcut to 'Temperature', 'Top P', 'Presence penalty', and 'Frequency penalty' settings, indicating the freedom level of the model. This parameter has three options: Select 'Improvise' to produce more creative responses; select 'Precise' (default) to produce more conservative responses; 'Balance' is a middle ground between 'Improvise' and 'Precise'.`,
      temperature: 'Temperature',
      temperatureMessage: 'Temperature is required',
      temperatureTip: `This parameter controls the randomness of the model's predictions. A lower temperature results in more conservative responses, while a higher temperature yields more creative and diverse responses.`,
      topP: 'Top P',
      topPMessage: 'Top P is required',
      topPTip:
        'Also known as "nucleus sampling", this parameter sets a threshold for selecting a smaller set of the most likely words to sample from, cutting off the less probable ones.',
      presencePenalty: 'Presence penalty',
      presencePenaltyMessage: 'Presence penalty is required',
      presencePenaltyTip:
        'This discourages the model from repeating the same information by penalizing words that have already appeared in the conversation.',
      frequencyPenalty: 'Frequency penalty',
      frequencyPenaltyMessage: 'Frequency penalty is required',
      frequencyPenaltyTip:
        'Similar to the presence penalty, this reduces the model’s tendency to repeat the same words frequently.',
      maxTokens: 'Max tokens',
      maxTokensMessage: 'Max tokens is required',
      maxTokensTip: `This sets the maximum length of the model's output, measured in the number of tokens (words or pieces of words). Defaults to 512. If disabled, you lift the maximum token limit, allowing the model to determine the number of tokens in its responses.`,
      maxTokensInvalidMessage: 'Please enter a valid number for Max Tokens.',
      maxTokensMinMessage: 'Max Tokens cannot be less than 0.',
      quote: 'Show quote',
      quoteTip: 'Whether to display the original text as a reference.',
      selfRag: 'Self-RAG',
      selfRagTip: 'Please refer to: https://huggingface.co/papers/2310.11511',
      overview: 'Chat ID',
      pv: 'Number of messages',
      uv: 'Active user number',
      speed: 'Token output speed',
      tokens: 'Consume the token number',
      round: 'Session Interaction Number',
      thumbUp: 'customer satisfaction',
      preview: 'Preview',
      embedded: 'Embedded',
      serviceApiEndpoint: 'Service API Endpoint',
      apiKey: 'API KEY',
      apiReference: 'API Documents',
      dateRange: 'Date Range:',
      backendServiceApi: 'API Server',
      createNewKey: 'Create new key',
      created: 'Created',
      action: 'Action',
      embedModalTitle: 'Embed into webpage',
      comingSoon: 'Coming soon',
      fullScreenTitle: 'Full Embed',
      fullScreenDescription:
        'Embed the following iframe into your website at the desired location',
      partialTitle: 'Partial Embed',
      extensionTitle: 'Chrome Extension',
      tokenError: 'Please create API key first.',
      betaError:
        'Please acquire a RAGFlow API key from the System Settings page first.',
      searching: 'Searching...',
      parsing: 'Parsing',
      uploading: 'Uploading',
      uploadFailed: 'Upload failed',
      regenerate: 'Regenerate',
      read: 'Read content',
      tts: 'Text to speech',
      ttsTip:
        'Ensure you select a TTS model on the Settings page before enabling this toggle to play text as audio.',
      relatedQuestion: 'Related question',
      answerTitle: 'R',
      multiTurn: 'Multi-turn optimization',
      multiTurnTip:
        'This optimizes user queries using context in a multi-round conversation. When enabled, it will consume additional LLM tokens.',
      howUseId: 'How to use chat ID?',
      description: 'Description of assistant',
      useKnowledgeGraph: 'Use knowledge graph',
      useKnowledgeGraphTip:
        'It will retrieve descriptions of relevant entities,relations and community reports, which will enhance inference of multi-hop and complex question.',
      keyword: 'Keyword analysis',
      keywordTip: `Apply LLM to analyze user's questions, extract keywords which will be emphesize during the relevance omputation.`,
    },
    setting: {
      profile: 'Profile',
      profileDescription: 'Update your photo and personal details here.',
      maxTokens: 'Max Tokens',
      maxTokensMessage: 'Max Tokens is required',
      maxTokensTip: `This sets the maximum length of the model's output, measured in the number of tokens (words or pieces of words). Defaults to 512. If disabled, you lift the maximum token limit, allowing the model to determine the number of tokens in its responses.`,
      maxTokensInvalidMessage: 'Please enter a valid number for Max Tokens.',
      maxTokensMinMessage: 'Max Tokens cannot be less than 0.',
      password: 'Password',
      passwordDescription:
        'Please enter your current password to change your password.',
      model: 'Model providers',
      modelDescription: 'Set the model parameter and API KEY here.',
      team: 'Team',
      system: 'System',
      logout: 'Log out',
      api: 'API',
      username: 'Username',
      usernameMessage: 'Please input your username!',
      photo: 'Your photo',
      photoDescription: 'This will be displayed on your profile.',
      colorSchema: 'Color schema',
      colorSchemaMessage: 'Please select your color schema!',
      colorSchemaPlaceholder: 'select your color schema',
      bright: 'Bright',
      dark: 'Dark',
      timezone: 'Time zone',
      timezoneMessage: 'Please input your timezone!',
      timezonePlaceholder: 'select your timezone',
      email: 'Email address',
      emailDescription: 'Once registered, E-mail cannot be changed.',
      currentPassword: 'Current password',
      currentPasswordMessage: 'Please input your password!',
      newPassword: 'New password',
      newPasswordMessage: 'Please input your password!',
      newPasswordDescription:
        'Your new password must be more than 8 characters.',
      confirmPassword: 'Confirm new password',
      confirmPasswordMessage: 'Please confirm your password!',
      confirmPasswordNonMatchMessage:
        'The new password that you entered do not match!',
      cancel: 'Cancel',
      addedModels: 'Added models',
      modelsToBeAdded: 'Models to be added',
      addTheModel: 'Add the model',
      apiKey: 'API-Key',
      apiKeyMessage:
        'Please enter the API key (for locally deployed model,ignore this).',
      apiKeyTip:
        'The API key can be obtained by registering the corresponding LLM supplier.',
      showMoreModels: 'Show more models',
      baseUrl: 'Base-Url',
      baseUrlTip:
        'If your API key is from OpenAI, just ignore it. Any other intermediate providers will give this base url with the API key.',
      modify: 'Modify',
      systemModelSettings: 'System Model Settings',
      chatModel: 'Chat model',
      chatModelTip:
        'The default chat LLM all the newly created knowledgebase will use.',
      embeddingModel: 'Embedding model',
      embeddingModelTip:
        'The default embedding model all the newly created knowledgebase will use.',
      img2txtModel: 'Img2txt model',
      img2txtModelTip:
        'The default multi-module model all the newly created knowledgebase will use. It can describe a picture or video.',
      sequence2txtModel: 'Sequence2txt model',
      sequence2txtModelTip:
        'The default ASR model all the newly created knowledgebase will use. Use this model to translate voices to corresponding text.',
      rerankModel: 'Rerank model',
      rerankModelTip: `The default rerank model is used to rerank chunks retrieved by users' questions.`,
      ttsModel: 'TTS Model',
      ttsModelTip:
        'The default TTS model will be used to generate speech during conversations upon request.',
      workspace: 'Workspace',
      upgrade: 'Upgrade',
      addLlmTitle: 'Add LLM',
      modelName: 'Model name',
      modelID: 'Model ID',
      modelUid: 'Model UID',
      modelNameMessage: 'Please input your model name!',
      modelType: 'Model type',
      modelTypeMessage: 'Please input your model type!',
      addLlmBaseUrl: 'Base url',
      baseUrlNameMessage: 'Please input your base url!',
      vision: 'Does it support Vision?',
      ollamaLink: 'How to integrate {{name}}',
      FishAudioLink: 'How to use FishAudio',
      TencentCloudLink: 'How to use TencentCloud ASR',
      volcModelNameMessage: 'Please input your model name!',
      addEndpointID: 'EndpointID of the model',
      endpointIDMessage: 'Please input your EndpointID of the model',
      addArkApiKey: 'VOLC ARK_API_KEY',
      ArkApiKeyMessage: 'Please input your ARK_API_KEY',
      bedrockModelNameMessage: 'Please input your model name!',
      addBedrockEngineAK: 'ACCESS KEY',
      bedrockAKMessage: 'Please input your ACCESS KEY',
      addBedrockSK: 'SECRET KEY',
      bedrockSKMessage: 'Please input your SECRET KEY',
      bedrockRegion: 'AWS Region',
      bedrockRegionMessage: 'Please select!',
      'us-east-1': 'US East (N. Virginia)',
      'us-west-2': 'US West (Oregon)',
      'ap-southeast-1': 'Asia Pacific (Singapore)',
      'ap-northeast-1': 'Asia Pacific (Tokyo)',
      'eu-central-1': 'Europe (Frankfurt)',
      'us-gov-west-1': 'AWS GovCloud (US-West)',
      'ap-southeast-2': 'Asia Pacific (Sydney)',
      addHunyuanSID: 'Hunyuan Secret ID',
      HunyuanSIDMessage: 'Please input your Secret ID',
      addHunyuanSK: 'Hunyuan Secret Key',
      HunyuanSKMessage: 'Please input your Secret Key',
      addTencentCloudSID: 'TencentCloud Secret ID',
      TencentCloudSIDMessage: 'Please input your Secret ID',
      addTencentCloudSK: 'TencentCloud Secret Key',
      TencentCloudSKMessage: 'Please input your Secret Key',
      SparkModelNameMessage: 'Please select Spark model',
      addSparkAPIPassword: 'Spark APIPassword',
      SparkAPIPasswordMessage: 'please input your APIPassword',
      addSparkAPPID: 'Spark APP ID',
      SparkAPPIDMessage: 'please input your APP ID',
      addSparkAPISecret: 'Spark APISecret',
      SparkAPISecretMessage: 'please input your APISecret',
      addSparkAPIKey: 'Spark APIKey',
      SparkAPIKeyMessage: 'please input your APIKey',
      yiyanModelNameMessage: 'Please input model name',
      addyiyanAK: 'yiyan API KEY',
      yiyanAKMessage: 'Please input your API KEY',
      addyiyanSK: 'yiyan Secret KEY',
      yiyanSKMessage: 'Please input your Secret KEY',
      FishAudioModelNameMessage:
        'Please give your speech synthesis model a name',
      addFishAudioAK: 'Fish Audio API KEY',
      addFishAudioAKMessage: 'Please input your API KEY',
      addFishAudioRefID: 'FishAudio Reference ID',
      addFishAudioRefIDMessage:
        'Please input the Reference ID (leave blank to use the default model).',
      GoogleModelIDMessage: 'Please input your model ID!',
      addGoogleProjectID: 'Project ID',
      GoogleProjectIDMessage: 'Please input your Project ID',
      addGoogleServiceAccountKey:
        'Service Account Key(Leave blank if you use Application Default Credentials)',
      GoogleServiceAccountKeyMessage:
        'Please input Google Cloud Service Account Key in base64 format',
      addGoogleRegion: 'Google Cloud Region',
      GoogleRegionMessage: 'Please input Google Cloud Region',
      modelProvidersWarn: `Please add both embedding model and LLM in <b>Settings > Model providers</b>  firstly. Then, set them in 'System model settings'.`,
      apiVersion: 'API-Version',
      apiVersionMessage: 'Please input API version',
      add: 'Add',
      updateDate: 'Update Date',
      role: 'Role',
      invite: 'Invite',
      agree: 'Accept',
      refuse: 'Decline',
      teamMembers: 'Team Members',
      joinedTeams: 'Joined Teams',
      sureDelete: 'Are you sure to remove this member?',
      quit: 'Quit',
      sureQuit: 'Are you sure you want to quit the team you joined?',
    },
    message: {
      registered: 'Registered!',
      logout: 'logout',
      logged: 'logged!',
      pleaseSelectChunk: 'Please select chunk!',
      modified: 'Modified',
      created: 'Created',
      deleted: 'Deleted',
      renamed: 'Renamed',
      operated: 'Operated',
      updated: 'Updated',
      uploaded: 'Uploaded',
      200: 'The server successfully returns the requested data.',
      201: 'Create or modify data successfully.',
      202: 'A request has been queued in the background (asynchronous task).',
      204: 'Data deleted successfully.',
      400: 'There was an error in the request issued, and the server did not create or modify data.',
      401: 'The user does not have permissions (wrong token, username, password).',
      403: 'The user is authorized, but access is prohibited.',
      404: 'The request was made for a record that does not exist, and the server did not perform the operation.',
      406: 'The requested format is not available.',
      410: 'The requested resource has been permanently deleted and will not be available again.',
      413: 'The total size of the files uploaded at once is too large.',
      422: 'When creating an object, a validation error occurred.',
      500: 'A server error occurred, please check the server.',
      502: 'Gateway error.',
      503: 'The service is unavailable and the server is temporarily overloaded or undergoing maintenance.',
      504: 'Gateway timeout.',
      requestError: 'Request error',
      networkAnomalyDescription:
        'There is an abnormality in your network and you cannot connect to the server.',
      networkAnomaly: 'network anomaly',
      hint: 'hint',
    },
    fileManager: {
      name: 'Name',
      uploadDate: 'Upload Date',
      knowledgeBase: 'Knowledge Base',
      size: 'Size',
      action: 'Action',
      addToKnowledge: 'Link to Knowledge Base',
      pleaseSelect: 'Please select',
      newFolder: 'New Folder',
      file: 'File',
      uploadFile: 'Upload File',
      directory: 'Directory',
      uploadTitle: 'Click or drag file to this area to upload',
      uploadDescription:
        'Support for a single or bulk upload. Strictly prohibited from uploading company data or other banned files.',
      local: 'Local uploads',
      s3: 'S3 uploads',
      preview: 'Preview',
      fileError: 'File error',
      uploadLimit:
        'The file size cannot exceed 10M, and the total number of files cannot exceed 128',
      destinationFolder: 'Destination folder',
    },
    flow: {
      cite: 'Cite',
      citeTip: 'citeTip',
      name: 'Name',
      nameMessage: 'Please input name',
      description: 'Description',
      examples: 'Examples',
      to: 'To',
      msg: 'Messages',
      messagePlaceholder: 'message',
      messageMsg: 'Please input message or delete this field.',
      addField: 'Add option',
      addMessage: 'Add message',
      loop: 'Loop',
      loopTip:
        'Loop is the upper limit of the number of loops of the current component, when the number of loops exceeds the value of loop, it means that the component can not complete the current task, please re-optimize agent',
      yes: 'Yes',
      no: 'No',
      key: 'Key',
      componentId: 'Component ID',
      add: 'Add',
      operation: 'operation',
      run: 'Run',
      save: 'Save',
      title: 'ID:',
      beginDescription: 'This is where the flow begins.',
      answerDescription: `A component that serves as the interface between human and bot, receiving user inputs and displaying the agent's responses.`,
      retrievalDescription: `A component that retrieves information from specified knowledge bases (datasets). Ensure that the knowledge bases you select use the same embedding model.`,
      generateDescription: `A component that prompts the LLM to generate responses. Ensure the prompt is set correctly.`,
      categorizeDescription: `A component that uses the LLM to classify user inputs into predefined categories. Ensure you specify the name, description, and examples for each category, along with the corresponding next component.`,
      relevantDescription: `A component that uses the LLM to assess whether the upstream output is relevant to the user's latest query. Ensure you specify the next component for each judge result.`,
      rewriteQuestionDescription: `A component that rewrites a user query from the Interact component, based on the context of previous dialogues.`,
      messageDescription:
        "A component that sends out a static message. If multiple messages are supplied, it randomly selects one to send. Ensure its downstream is 'Interact', the interface component.",
      keywordDescription: `A component that retrieves top N search results from user's input. Ensure the TopN value is set properly before use.`,
      switchDescription: `A component that evaluates conditions based on the output of previous components and directs the flow of execution accordingly. It allows for complex branching logic by defining cases and specifying actions for each case or default action if no conditions are met.`,
      wikipediaDescription: `A component that searches from wikipedia.org, using TopN to specify the number of search results. It supplements the existing knowledge bases.`,
      promptText: `Please summarize the following paragraphs. Be careful with the numbers, do not make things up. Paragraphs as following:
        {input}
  The above is the content you need to summarize.`,
      createGraph: 'Create agent',
      createFromTemplates: 'Create from templates',
      retrieval: 'Retrieval',
      generate: 'Generate',
      answer: 'Interact',
      categorize: 'Categorize',
      relevant: 'Relevant',
      rewriteQuestion: 'Rewrite',
      rewrite: 'Rewrite',
      begin: 'Begin',
      message: 'Message',
      blank: 'Blank',
      createFromNothing: 'Create your agent from scratch',
      addItem: 'Add Item',
      addSubItem: 'Add Sub Item',
      nameRequiredMsg: 'Name is required',
      nameRepeatedMsg: 'The name cannot be repeated',
      keywordExtract: 'Keyword',
      keywordExtractDescription: `A component that extracts keywords from a user query, with Top N specifying the number of keywords to extract.`,
      baidu: 'Baidu',
      baiduDescription: `A component that searches from baidu.com, using TopN to specify the number of search results. It supplements the existing knowledge bases.`,
      duckDuckGo: 'DuckDuckGo',
      duckDuckGoDescription:
        'A component that searches from duckduckgo.com, allowing you to specify the number of search results using TopN. It supplements the existing knowledge bases.',
      channel: 'Channel',
      channelTip: `Perform text search or news search on the component's input`,
      text: 'Text',
      news: 'News',
      messageHistoryWindowSize: 'Message window size',
      messageHistoryWindowSizeTip:
        'The  window size of conversation history that needed to be seen by LLM. The larger the better. But be careful with the maximum content length of LLM.',
      wikipedia: 'Wikipedia',
      pubMed: 'PubMed',
      pubMedDescription:
        'A component that searches from https://pubmed.ncbi.nlm.nih.gov/, allowing you to specify the number of search results using TopN. It supplements the existing knowledge bases.',
      email: 'Email',
      emailTip:
        'E-mail is a required field. You must input an E-mail address here.',
      arXiv: 'ArXiv',
      arXivDescription:
        'A component that searches from https://arxiv.org/, allowing you to specify the number of search results using TopN. It supplements the existing knowledge bases.',
      sortBy: 'Sort by',
      submittedDate: 'Submitted date',
      lastUpdatedDate: 'Last updated date',
      relevance: 'Relevance',
      google: 'Google',
      googleDescription:
        'A component that searches from https://www.google.com/, allowing you to specify the number of search results using TopN. It supplements the existing knowledge bases. Please note that this requires an API key from serpapi.com.',
      bing: 'Bing',
      bingDescription:
        'A component that searches from https://www.bing.com/, allowing you to specify the number of search results using TopN. It supplements the existing knowledge bases. Please note that this requires an API key from microsoft.com.',
      apiKey: 'API KEY',
      country: 'Country&Region',
      language: 'Language',
      googleScholar: 'Google Scholar',
      googleScholarDescription:
        'A component that searches https://scholar.google.com/. You can use Top N to specify the number of search results.',
      yearLow: 'Year low',
      yearHigh: 'Year high',
      patents: 'Patents',
      data: 'Data',
      deepL: 'DeepL',
      deepLDescription:
        'A component that gets more specialized translations from https://www.deepl.com/.',
      authKey: 'Auth key',
      sourceLang: 'Source language',
      targetLang: 'Target language',
      gitHub: 'GitHub',
      gitHubDescription:
        'A component that searches for repositories from https://github.com/. You can use Top N to specify the number of search results.',
      baiduFanyi: 'BaiduFanyi',
      baiduFanyiDescription:
        'A component that gets specialized translations from https://fanyi.baidu.com/.',
      appid: 'App ID',
      secretKey: 'Secret key',
      domain: 'Domain',
      transType: 'Translation type',
      baiduSecretKeyOptions: {
        translate: 'General translation',
        fieldtranslate: 'Field translation',
      },
      baiduDomainOptions: {
        it: 'Information technology',
        finance: 'Financial and economics',
        machinery: 'Machinery manufacturing',
        senimed: 'Biomedicine',
        novel: 'Online literature',
        academic: 'Academic paper',
        aerospace: 'Aerospace',
        wiki: 'Humanities and social sciences',
        news: 'News and information',
        law: 'Laws and regulations',
        contract: 'Contract',
      },
      baiduSourceLangOptions: {
        auto: 'Auto detect',
        zh: 'Chinese',
        en: 'English',
        yue: 'Cantonese',
        wyw: 'Classical Chinese',
        jp: 'Japanese',
        kor: 'Korean',
        fra: 'French',
        spa: 'Spanish',
        th: 'Thai',
        ara: 'Arabic',
        ru: 'Russian',
        pt: 'Portuguese',
        de: 'German',
        it: 'Italian',
        el: 'Greek',
        nl: 'Dutch',
        pl: 'Polish',
        bul: 'Bulgarian',
        est: 'Estonian',
        dan: 'Danish',
        fin: 'Finnish',
        cs: 'Czech',
        rom: 'Romanian',
        slo: 'Slovenian',
        swe: 'Swedish',
        hu: 'Hungarian',
        cht: 'Traditional Chinese',
        vie: 'Vietnamese',
      },
      qWeather: 'QWeather',
      qWeatherDescription:
        'A component that retrieves weather information, such as temperature and air quality, from https://www.qweather.com/.',
      lang: 'Language',
      type: 'Type',
      webApiKey: 'Web API key',
      userType: 'User type',
      timePeriod: 'Time period',
      qWeatherLangOptions: {
        zh: 'Simplified Chinese',
        'zh-hant': 'Traditional Chinese',
        en: 'English',
        de: 'German',
        es: 'Spanish',
        fr: 'French',
        it: 'Italian',
        ja: 'Japanese',
        ko: 'Korean',
        ru: 'Russian',
        hi: 'Hindi',
        th: 'Thai',
        ar: 'Arabic',
        pt: 'Portuguese',
        bn: 'Bengali',
        ms: 'Malay',
        nl: 'Dutch',
        el: 'Greek',
        la: 'Latin',
        sv: 'Swedish',
        id: 'Indonesian',
        pl: 'Polish',
        tr: 'Turkish',
        cs: 'Czech',
        et: 'Estonian',
        vi: 'Vietnamese',
        fil: 'Filipino',
        fi: 'Finnish',
        he: 'Hebrew',
        is: 'Icelandic',
        nb: 'Norwegian',
      },
      qWeatherTypeOptions: {
        weather: 'Weather forecast',
        indices: 'Weather life index',
        airquality: 'Air quality',
      },
      qWeatherUserTypeOptions: {
        free: 'Free subscriber',
        paid: 'Paid subscriber',
      },
      qWeatherTimePeriodOptions: {
        now: 'Now',
        '3d': '3 days',
        '7d': '7 days',
        '10d': '10 days',
        '15d': '12 days',
        '30d': '30 days',
      },
      publish: 'API',
      exeSQL: 'ExeSQL',
      exeSQLDescription:
        'A component that performs SQL queries on a relational database, supporting querying from MySQL, PostgreSQL, or MariaDB.',
      dbType: 'Database Type',
      database: 'Database',
      username: 'Username',
      host: 'Host',
      port: 'Port',
      password: 'Password',
      switch: 'Switch',
      logicalOperator: 'Logical operator',
      switchOperatorOptions: {
        equal: 'Equals',
        notEqual: 'Not equal',
        gt: 'Greater than',
        ge: 'Greater equal',
        lt: 'Less than',
        le: 'Less equal',
        contains: 'Contains',
        notContains: 'Not contains',
        startWith: 'Starts with',
        endWith: 'Ends with',
        empty: 'Is empty',
        notEmpty: 'Not empty',
      },
      switchLogicOperatorOptions: {
        and: 'AND',
        or: 'OR',
      },
      operator: 'Operator',
      value: 'Value',
      useTemplate: 'Use this template',
      wenCai: 'WenCai',
      queryType: 'Query type',
      wenCaiDescription:
        'A component that obtains financial information, including stock prices and funding news, from a wide range of financial websites.',
      wenCaiQueryTypeOptions: {
        stock: 'stock',
        zhishu: 'index',
        fund: 'fund',
        hkstock: 'Hong Kong shares',
        usstock: 'US stock market',
        threeboard: 'New OTC Market',
        conbond: 'Convertible Bond',
        insurance: 'insurance',
        futures: 'futures',
        lccp: 'Financing',
        foreign_exchange: 'Foreign currency',
      },
      akShare: 'AkShare',
      akShareDescription:
        'A component that obtains news about stocks from https://www.eastmoney.com/.',
      yahooFinance: 'YahooFinance',
      yahooFinanceDescription:
        'A component that queries information about a publicly traded company using its ticker symbol.',
      crawler: 'Web Crawler',
      crawlerDescription:
        'A component that crawls HTML source code from a specified URL.',
      proxy: 'Proxy',
      crawlerResultOptions: {
        html: 'Html',
        markdown: 'Markdown',
        content: 'Content',
      },
      extractType: 'Extract type',
      info: 'Info',
      history: 'History',
      financials: 'Financials',
      balanceSheet: 'Balance sheet',
      cashFlowStatement: 'Cash flow statement',
      jin10: 'Jin10',
      jin10Description:
        'A component that retrieves financial information from the Jin10 Open Platform, including news updates, calendars, quotes, and references.',
      flashType: 'Flash type',
      filter: 'Filter',
      contain: 'Contain',
      calendarType: 'Calendar type',
      calendarDatashape: 'Calendar datashape',
      symbolsDatatype: 'Symbols datatype',
      symbolsType: 'Symbols type',
      jin10TypeOptions: {
        flash: 'Quick News',
        calendar: 'Calendar',
        symbols: 'quotes',
        news: 'reference',
      },
      jin10FlashTypeOptions: {
        '1': 'Market News',
        '2': ' Futures News',
        '3': 'US-Hong Kong News',
        '4': 'A-Share News',
        '5': 'Commodities & Forex News',
      },
      jin10CalendarTypeOptions: {
        cj: 'Macroeconomic Data Calendar',
        qh: ' Futures Calendar',
        hk: 'Hong Kong Stock Market Calendar',
        us: 'US Stock Market Calendar',
      },
      jin10CalendarDatashapeOptions: {
        data: 'Data',
        event: ' Event',
        holiday: 'Holiday',
      },
      jin10SymbolsTypeOptions: {
        GOODS: 'Commodity Quotes',
        FOREX: ' Forex Quotes',
        FUTURE: 'International Market Quotes',
        CRYPTO: 'Cryptocurrency Quotes',
      },
      jin10SymbolsDatatypeOptions: {
        symbols: 'Commodity List',
        quotes: ' Latest Market Quotes',
      },
      concentrator: 'Concentrator',
      concentratorDescription:
        'A component that receives the output from the upstream component and passes it on as input to the downstream components.',
      tuShare: 'TuShare',
      tuShareDescription:
        'A component that obtains financial news briefs from mainstream financial websites, aiding industry and quantitative research.',
      tuShareSrcOptions: {
        sina: 'Sina',
        wallstreetcn: 'wallstreetcn',
        '10jqka': 'Straight flush',
        eastmoney: 'Eastmoney',
        yuncaijing: 'YUNCAIJING',
        fenghuang: 'FENGHUANG',
        jinrongjie: 'JRJ',
      },
      token: 'Token',
      src: 'Source',
      startDate: 'Start date',
      endDate: 'End date',
      keyword: 'Keyword',
      note: 'Note',
      noteDescription: 'Note',
      notePlaceholder: 'Please enter a note',
      invoke: 'Invoke',
      invokeDescription: `A component capable of calling remote services, using other components' outputs or constants as inputs.`,
      url: 'Url',
      method: 'Method',
      timeout: 'Timeout',
      headers: 'Headers',
      cleanHtml: 'Clean HTML',
      cleanHtmlTip:
        'If the response is HTML formatted and only the primary content wanted, please toggle it on.',
      reference: 'Reference',
      input: 'Input',
      output: 'Output',
      parameter: 'Parameter',
      howUseId: 'How to use agent ID?',
      content: 'Content',
      operationResults: 'Operation Results',
      autosaved: 'Autosaved',
      optional: 'Optional',
      pasteFileLink: 'Paste file link',
      testRun: 'Test Run',
      template: 'Template',
      templateDescription:
        'A component that formats the output of other components.1. Supports Jinja2 templates, will first convert the input to an object and then render the template, 2. Simultaneously retains the original method of using {parameter} string replacement',
      emailComponent: 'Email',
      emailDescription: 'Send an email to a specified address.',
      smtpServer: 'SMTP Server',
      smtpPort: 'SMTP Port',
      senderEmail: 'Sender Email',
      authCode: 'Authorization Code',
      senderName: 'Sender Name',
      toEmail: 'Recipient Email',
      ccEmail: 'CC Email',
      emailSubject: 'Subject',
      emailContent: 'Content',
      smtpServerRequired: 'Please input SMTP server address',
      senderEmailRequired: 'Please input sender email',
      authCodeRequired: 'Please input authorization code',
      toEmailRequired: 'Please input recipient email',
      emailContentRequired: 'Please input email content',
      emailSentSuccess: 'Email sent successfully',
      emailSentFailed: 'Failed to send email',
      dynamicParameters: 'Dynamic Parameters',
      jsonFormatTip:
        'Upstream component should provide JSON string in following format:',
      toEmailTip: 'to_email: Recipient email (Required)',
      ccEmailTip: 'cc_email: CC email (Optional)',
      subjectTip: 'subject: Email subject (Optional)',
      contentTip: 'content: Email content (Optional)',
      jsonUploadTypeErrorMessage: 'Please upload json file',
      jsonUploadContentErrorMessage: 'json file error',
      iteration: 'Iteration',
      iterationDescription: `This component firstly split the input into array by "delimiter".
Perform the same operation steps on the elements in the array in sequence until all results are output, which can be understood as a task batch processor.

For example, within the long text translation iteration node, if all content is input to the LLM node, the single conversation limit may be reached. The upstream node can first split the long text into multiple fragments, and cooperate with the iterative node to perform batch translation on each fragment to avoid reaching the LLM message limit for a single conversation.`,
      delimiterTip: `
This delimiter is used to split the input text into several text pieces echo of which will be performed as input item of each iteration.`,
      delimiterOptions: {
        comma: 'Comma',
        lineBreak: 'Line break',
        tab: 'Tab',
        underline: 'Underline',
        diagonal: 'Diagonal',
        minus: 'Minus',
        semicolon: 'Semicolon',
      },
      addVariable: 'Add variable',
      variableSettings: 'Variable settings',
      globalVariables: 'Global variables',
      systemPrompt: 'System prompt',
      addCategory: 'Add category',
      categoryName: 'Category name',
      nextStep: 'Next step',
    },
    footer: {
      profile: 'All rights reserved @ React',
    },
    layout: {
      file: 'file',
      knowledge: 'knowledge',
      chat: 'chat',
    },
  },
};