File size: 8,195 Bytes
75f6aef
7dd2893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bc2fc9
f4456af
 
 
 
 
cfd6ece
9bf75d4
f4456af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0404a52
 
f4456af
0404a52
f4456af
 
 
 
 
 
 
 
 
 
 
 
c372afe
f4456af
 
3079197
22fe41e
8bc2fc9
f4456af
3079197
22fe41e
8bc2fc9
f4456af
 
 
 
 
 
 
 
 
 
 
1b2aab6
f4456af
 
 
 
 
 
 
 
4bfd3a5
f4456af
 
 
 
 
 
 
 
 
 
 
6ad2626
f4456af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b2aab6
f4456af
 
 
 
 
 
 
 
75f6aef
f4456af
 
 
 
 
 
79ada0b
 
 
 
f4456af
 
 
 
 
 
 
cfd6ece
f4456af
 
 
 
 
 
 
 
 
 
 
328b4c9
 
cfd6ece
328b4c9
 
f4456af
 
 
 
1b2aab6
f4456af
 
 
 
 
 
 
 
328b4c9
 
f4456af
 
328b4c9
 
f4456af
1b2aab6
f4456af
 
 
 
 
 
 
 
75f6aef
 
 
f4456af
75f6aef
c9d78b3
692cc99
75f6aef
 
 
 
 
 
 
c9d78b3
75f6aef
f4456af
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    #
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#

import logging
import math
import json
import re
import os
import numpy as np
from rag.nlp import rag_tokenizer
from api.utils.file_utils import get_project_base_directory


class Dealer:
    def __init__(self):
        self.stop_words = set(["请问",
                               "您",
                               "你",
                               "我",
                               "他",
                               "是",
                               "的",
                               "就",
                               "有",
                               "于",
                               "及",
                               "即",
                               "在",
                               "为",
                               "最",
                               "有",
                               "从",
                               "以",
                               "了",
                               "将",
                               "与",
                               "吗",
                               "吧",
                               "中",
                               "#",
                               "什么",
                               "怎么",
                               "哪个",
                               "哪些",
                               "啥",
                               "相关"])

        def load_dict(fnm):
            res = {}
            f = open(fnm, "r")
            while True:
                line = f.readline()
                if not line:
                    break
                arr = line.replace("\n", "").split("\t")
                if len(arr) < 2:
                    res[arr[0]] = 0
                else:
                    res[arr[0]] = int(arr[1])

            c = 0
            for _, v in res.items():
                c += v
            if c == 0:
                return set(res.keys())
            return res

        fnm = os.path.join(get_project_base_directory(), "rag/res")
        self.ne, self.df = {}, {}
        try:
            self.ne = json.load(open(os.path.join(fnm, "ner.json"), "r"))
        except Exception:
            logging.warning("Load ner.json FAIL!")
        try:
            self.df = load_dict(os.path.join(fnm, "term.freq"))
        except Exception:
            logging.warning("Load term.freq FAIL!")

    def pretoken(self, txt, num=False, stpwd=True):
        patt = [
            r"[~—\t @#%!<>,\.\?\":;'\{\}\[\]_=\(\)\|,。?》•●○↓《;‘’:“”【¥ 】…¥!、·()×`&\\/「」\\]"
        ]
        rewt = [
        ]
        for p, r in rewt:
            txt = re.sub(p, r, txt)

        res = []
        for t in rag_tokenizer.tokenize(txt).split():
            tk = t
            if (stpwd and tk in self.stop_words) or (
                    re.match(r"[0-9]$", tk) and not num):
                continue
            for p in patt:
                if re.match(p, t):
                    tk = "#"
                    break
            #tk = re.sub(r"([\+\\-])", r"\\\1", tk)
            if tk != "#" and tk:
                res.append(tk)
        return res

    def tokenMerge(self, tks):
        def oneTerm(t): return len(t) == 1 or re.match(r"[0-9a-z]{1,2}$", t)

        res, i = [], 0
        while i < len(tks):
            j = i
            if i == 0 and oneTerm(tks[i]) and len(
                    tks) > 1 and (len(tks[i + 1]) > 1 and not re.match(r"[0-9a-zA-Z]", tks[i + 1])):  # 多 工位
                res.append(" ".join(tks[0:2]))
                i = 2
                continue

            while j < len(
                    tks) and tks[j] and tks[j] not in self.stop_words and oneTerm(tks[j]):
                j += 1
            if j - i > 1:
                if j - i < 5:
                    res.append(" ".join(tks[i:j]))
                    i = j
                else:
                    res.append(" ".join(tks[i:i + 2]))
                    i = i + 2
            else:
                if len(tks[i]) > 0:
                    res.append(tks[i])
                i += 1
        return [t for t in res if t]

    def ner(self, t):
        if not self.ne:
            return ""
        res = self.ne.get(t, "")
        if res:
            return res

    def split(self, txt):
        tks = []
        for t in re.sub(r"[ \t]+", " ", txt).split():
            if tks and re.match(r".*[a-zA-Z]$", tks[-1]) and \
               re.match(r".*[a-zA-Z]$", t) and tks and \
               self.ne.get(t, "") != "func" and self.ne.get(tks[-1], "") != "func":
                tks[-1] = tks[-1] + " " + t
            else:
                tks.append(t)
        return tks

    def weights(self, tks, preprocess=True):
        def skill(t):
            if t not in self.sk:
                return 1
            return 6

        def ner(t):
            if re.match(r"[0-9,.]{2,}$", t):
                return 2
            if re.match(r"[a-z]{1,2}$", t):
                return 0.01
            if not self.ne or t not in self.ne:
                return 1
            m = {"toxic": 2, "func": 1, "corp": 3, "loca": 3, "sch": 3, "stock": 3,
                 "firstnm": 1}
            return m[self.ne[t]]

        def postag(t):
            t = rag_tokenizer.tag(t)
            if t in set(["r", "c", "d"]):
                return 0.3
            if t in set(["ns", "nt"]):
                return 3
            if t in set(["n"]):
                return 2
            if re.match(r"[0-9-]+", t):
                return 2
            return 1

        def freq(t):
            if re.match(r"[0-9. -]{2,}$", t):
                return 3
            s = rag_tokenizer.freq(t)
            if not s and re.match(r"[a-z. -]+$", t):
                return 300
            if not s:
                s = 0

            if not s and len(t) >= 4:
                s = [tt for tt in rag_tokenizer.fine_grained_tokenize(t).split() if len(tt) > 1]
                if len(s) > 1:
                    s = np.min([freq(tt) for tt in s]) / 6.
                else:
                    s = 0

            return max(s, 10)

        def df(t):
            if re.match(r"[0-9. -]{2,}$", t):
                return 5
            if t in self.df:
                return self.df[t] + 3
            elif re.match(r"[a-z. -]+$", t):
                return 300
            elif len(t) >= 4:
                s = [tt for tt in rag_tokenizer.fine_grained_tokenize(t).split() if len(tt) > 1]
                if len(s) > 1:
                    return max(3, np.min([df(tt) for tt in s]) / 6.)

            return 3

        def idf(s, N): return math.log10(10 + ((N - s + 0.5) / (s + 0.5)))

        tw = []
        if not preprocess:
            idf1 = np.array([idf(freq(t), 10000000) for t in tks])
            idf2 = np.array([idf(df(t), 1000000000) for t in tks])
            wts = (0.3 * idf1 + 0.7 * idf2) * \
                np.array([ner(t) * postag(t) for t in tks])
            wts = [s for s in wts]
            tw = list(zip(tks, wts))
        else:
            for tk in tks:
                tt = self.tokenMerge(self.pretoken(tk, True))
                idf1 = np.array([idf(freq(t), 10000000) for t in tt])
                idf2 = np.array([idf(df(t), 1000000000) for t in tt])
                wts = (0.3 * idf1 + 0.7 * idf2) * \
                    np.array([ner(t) * postag(t) for t in tt])
                wts = [s for s in wts]
                tw.extend(zip(tt, wts))

        S = np.sum([s for _, s in tw])
        return [(t, s / S) for t, s in tw]