File size: 26,405 Bytes
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bc2fc9
32dd133
aeb6dbc
 
 
 
41012b3
31f09e1
 
40a1db3
 
aeb6dbc
 
 
6101699
aeb6dbc
 
 
 
 
 
 
 
 
40a1db3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aeb6dbc
 
 
 
cd7d2b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aeb6dbc
44731b3
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d25ba26
 
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e02591
aeb6dbc
 
 
 
 
 
40a1db3
aeb6dbc
 
 
41012b3
1e02591
bf00d96
aeb6dbc
bf00d96
 
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
6101699
aeb6dbc
 
 
 
 
 
 
 
 
 
d78b07c
 
b471fdf
aeb6dbc
 
 
 
 
 
 
32dd133
 
 
aeb6dbc
 
8bc2fc9
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
684f1d7
 
 
 
0a66555
 
684f1d7
aeb6dbc
 
 
 
 
 
 
 
 
 
 
0a66555
95863fc
 
 
aeb6dbc
 
 
 
 
8bc2fc9
aeb6dbc
41012b3
aeb6dbc
 
32dd133
 
aeb6dbc
 
7362294
aeb6dbc
 
 
 
 
 
 
6d672a7
43cb979
aeb6dbc
 
 
 
 
 
 
41012b3
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28e0efa
41012b3
0a66555
 
 
82bdd9f
aeb6dbc
 
32dd133
aeb6dbc
6d672a7
aeb6dbc
32dd133
6d597a0
32dd133
 
 
 
 
 
aeb6dbc
 
6d672a7
8bc2fc9
aeb6dbc
32dd133
 
 
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bc2fc9
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bc2fc9
aeb6dbc
6101699
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bc2fc9
aeb6dbc
8bc2fc9
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70153b9
aeb6dbc
 
 
 
 
 
 
8bc2fc9
aeb6dbc
 
6d672a7
 
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
6d672a7
 
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32dd133
 
44731b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
684f1d7
 
 
 
 
 
 
 
 
 
31f09e1
 
 
684f1d7
 
31f09e1
 
 
 
 
684f1d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31f09e1
 
 
 
 
 
 
 
684f1d7
 
 
 
 
 
 
 
 
 
 
32dd133
 
 
 
 
41012b3
 
 
 
 
9c45d1e
41012b3
 
 
6101699
41012b3
 
 
 
 
9c45d1e
41012b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28e0efa
41012b3
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import logging
import binascii
import os
import json
import re
from copy import deepcopy
from timeit import default_timer as timer
import datetime
from datetime import timedelta
from api.db import LLMType, ParserType,StatusEnum
from api.db.db_models import Dialog, Conversation,DB
from api.db.services.common_service import CommonService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMService, TenantLLMService, LLMBundle
from api import settings
from rag.app.resume import forbidden_select_fields4resume
from rag.nlp.search import index_name
from rag.utils import rmSpace, num_tokens_from_string, encoder
from api.utils.file_utils import get_project_base_directory


class DialogService(CommonService):
    model = Dialog

    @classmethod
    @DB.connection_context()
    def get_list(cls, tenant_id,
                 page_number, items_per_page, orderby, desc, id , name):
        chats = cls.model.select()
        if id:
            chats = chats.where(cls.model.id == id)
        if name:
            chats = chats.where(cls.model.name == name)
        chats = chats.where(
              (cls.model.tenant_id == tenant_id)
            & (cls.model.status == StatusEnum.VALID.value)
        )
        if desc:
            chats = chats.order_by(cls.model.getter_by(orderby).desc())
        else:
            chats = chats.order_by(cls.model.getter_by(orderby).asc())

        chats = chats.paginate(page_number, items_per_page)

        return list(chats.dicts())


class ConversationService(CommonService):
    model = Conversation

    @classmethod
    @DB.connection_context()
    def get_list(cls,dialog_id,page_number, items_per_page, orderby, desc, id , name):
        sessions = cls.model.select().where(cls.model.dialog_id ==dialog_id)
        if id:
            sessions = sessions.where(cls.model.id == id)
        if name:
            sessions = sessions.where(cls.model.name == name)
        if desc:
            sessions = sessions.order_by(cls.model.getter_by(orderby).desc())
        else:
            sessions = sessions.order_by(cls.model.getter_by(orderby).asc())

        sessions = sessions.paginate(page_number, items_per_page)

        return list(sessions.dicts())


def message_fit_in(msg, max_length=4000):
    def count():
        nonlocal msg
        tks_cnts = []
        for m in msg:
            tks_cnts.append(
                {"role": m["role"], "count": num_tokens_from_string(m["content"])})
        total = 0
        for m in tks_cnts:
            total += m["count"]
        return total

    c = count()
    if c < max_length:
        return c, msg

    msg_ = [m for m in msg[:-1] if m["role"] == "system"]
    if len(msg) > 1:
        msg_.append(msg[-1])
    msg = msg_
    c = count()
    if c < max_length:
        return c, msg

    ll = num_tokens_from_string(msg_[0]["content"])
    l = num_tokens_from_string(msg_[-1]["content"])
    if ll / (ll + l) > 0.8:
        m = msg_[0]["content"]
        m = encoder.decode(encoder.encode(m)[:max_length - l])
        msg[0]["content"] = m
        return max_length, msg

    m = msg_[1]["content"]
    m = encoder.decode(encoder.encode(m)[:max_length - l])
    msg[1]["content"] = m
    return max_length, msg


def llm_id2llm_type(llm_id):
    llm_id, _ = TenantLLMService.split_model_name_and_factory(llm_id)
    fnm = os.path.join(get_project_base_directory(), "conf")
    llm_factories = json.load(open(os.path.join(fnm, "llm_factories.json"), "r"))
    for llm_factory in llm_factories["factory_llm_infos"]:
        for llm in llm_factory["llm"]:
            if llm_id == llm["llm_name"]:
                return llm["model_type"].strip(",")[-1]


def chat(dialog, messages, stream=True, **kwargs):
    assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
    st = timer()
    llm_id, fid = TenantLLMService.split_model_name_and_factory(dialog.llm_id)
    llm = LLMService.query(llm_name=llm_id) if not fid else LLMService.query(llm_name=llm_id, fid=fid)
    if not llm:
        llm = TenantLLMService.query(tenant_id=dialog.tenant_id, llm_name=llm_id) if not fid else \
            TenantLLMService.query(tenant_id=dialog.tenant_id, llm_name=llm_id, llm_factory=fid)
        if not llm:
            raise LookupError("LLM(%s) not found" % dialog.llm_id)
        max_tokens = 8192
    else:
        max_tokens = llm[0].max_tokens
    kbs = KnowledgebaseService.get_by_ids(dialog.kb_ids)
    embd_nms = list(set([kb.embd_id for kb in kbs]))
    if len(embd_nms) != 1:
        yield {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}
        return {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}

    is_kg = all([kb.parser_id == ParserType.KG for kb in kbs])
    retr = settings.retrievaler if not is_kg else settings.kg_retrievaler

    questions = [m["content"] for m in messages if m["role"] == "user"][-3:]
    attachments = kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None
    if "doc_ids" in messages[-1]:
        attachments = messages[-1]["doc_ids"]
        for m in messages[:-1]:
            if "doc_ids" in m:
                attachments.extend(m["doc_ids"])

    embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING, embd_nms[0])
    if not embd_mdl:
        raise LookupError("Embedding model(%s) not found" % embd_nms[0])

    if llm_id2llm_type(dialog.llm_id) == "image2text":
        chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
    else:
        chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)

    prompt_config = dialog.prompt_config
    field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
    tts_mdl = None
    if prompt_config.get("tts"):
        tts_mdl = LLMBundle(dialog.tenant_id, LLMType.TTS)
    # try to use sql if field mapping is good to go
    if field_map:
        logging.debug("Use SQL to retrieval:{}".format(questions[-1]))
        ans = use_sql(questions[-1], field_map, dialog.tenant_id, chat_mdl, prompt_config.get("quote", True))
        if ans:
            yield ans
            return

    for p in prompt_config["parameters"]:
        if p["key"] == "knowledge":
            continue
        if p["key"] not in kwargs and not p["optional"]:
            raise KeyError("Miss parameter: " + p["key"])
        if p["key"] not in kwargs:
            prompt_config["system"] = prompt_config["system"].replace(
                "{%s}" % p["key"], " ")

    if len(questions) > 1 and prompt_config.get("refine_multiturn"):
        questions = [full_question(dialog.tenant_id, dialog.llm_id, messages)]
    else:
        questions = questions[-1:]
    refineQ_tm = timer()
    keyword_tm = timer()

    rerank_mdl = None
    if dialog.rerank_id:
        rerank_mdl = LLMBundle(dialog.tenant_id, LLMType.RERANK, dialog.rerank_id)

    for _ in range(len(questions) // 2):
        questions.append(questions[-1])
    if "knowledge" not in [p["key"] for p in prompt_config["parameters"]]:
        kbinfos = {"total": 0, "chunks": [], "doc_aggs": []}
    else:
        if prompt_config.get("keyword", False):
            questions[-1] += keyword_extraction(chat_mdl, questions[-1])
            keyword_tm = timer()

        tenant_ids = list(set([kb.tenant_id for kb in kbs]))
        kbinfos = retr.retrieval(" ".join(questions), embd_mdl, tenant_ids, dialog.kb_ids, 1, dialog.top_n,
                                        dialog.similarity_threshold,
                                        dialog.vector_similarity_weight,
                                        doc_ids=attachments,
                                        top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl)
    knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
    logging.debug(
        "{}->{}".format(" ".join(questions), "\n->".join(knowledges)))
    retrieval_tm = timer()

    if not knowledges and prompt_config.get("empty_response"):
        empty_res = prompt_config["empty_response"]
        yield {"answer": empty_res, "reference": kbinfos, "audio_binary": tts(tts_mdl, empty_res)}
        return {"answer": prompt_config["empty_response"], "reference": kbinfos}

    kwargs["knowledge"] = "\n\n------\n\n".join(knowledges)
    gen_conf = dialog.llm_setting

    msg = [{"role": "system", "content": prompt_config["system"].format(**kwargs)}]
    msg.extend([{"role": m["role"], "content": re.sub(r"##\d+\$\$", "", m["content"])}
                for m in messages if m["role"] != "system"])
    used_token_count, msg = message_fit_in(msg, int(max_tokens * 0.97))
    assert len(msg) >= 2, f"message_fit_in has bug: {msg}"
    prompt = msg[0]["content"]
    prompt += "\n\n### Query:\n%s" % " ".join(questions)

    if "max_tokens" in gen_conf:
        gen_conf["max_tokens"] = min(
            gen_conf["max_tokens"],
            max_tokens - used_token_count)

    def decorate_answer(answer):
        nonlocal prompt_config, knowledges, kwargs, kbinfos, prompt, retrieval_tm
        refs = []
        if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
            answer, idx = retr.insert_citations(answer,
                                                       [ck["content_ltks"]
                                                        for ck in kbinfos["chunks"]],
                                                       [ck["vector"]
                                                        for ck in kbinfos["chunks"]],
                                                       embd_mdl,
                                                       tkweight=1 - dialog.vector_similarity_weight,
                                                       vtweight=dialog.vector_similarity_weight)
            idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
            recall_docs = [
                d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
            if not recall_docs: recall_docs = kbinfos["doc_aggs"]
            kbinfos["doc_aggs"] = recall_docs

            refs = deepcopy(kbinfos)
            for c in refs["chunks"]:
                if c.get("vector"):
                    del c["vector"]

        if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
            answer += " Please set LLM API-Key in 'User Setting -> Model providers -> API-Key'"
        done_tm = timer()
        prompt += "\n\n### Elapsed\n  - Refine Question: %.1f ms\n  - Keywords: %.1f ms\n  - Retrieval: %.1f ms\n  - LLM: %.1f ms" % (
            (refineQ_tm - st) * 1000, (keyword_tm - refineQ_tm) * 1000, (retrieval_tm - keyword_tm) * 1000,
            (done_tm - retrieval_tm) * 1000)
        return {"answer": answer, "reference": refs, "prompt": prompt}

    if stream:
        last_ans = ""
        answer = ""
        for ans in chat_mdl.chat_streamly(prompt, msg[1:], gen_conf):
            answer = ans
            delta_ans = ans[len(last_ans):]
            if num_tokens_from_string(delta_ans) < 16:
                continue
            last_ans = answer
            yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
        delta_ans = answer[len(last_ans):]
        if delta_ans:
            yield {"answer": answer, "reference": {}, "audio_binary": tts(tts_mdl, delta_ans)}
        yield decorate_answer(answer)
    else:
        answer = chat_mdl.chat(prompt, msg[1:], gen_conf)
        logging.debug("User: {}|Assistant: {}".format(
            msg[-1]["content"], answer))
        res = decorate_answer(answer)
        res["audio_binary"] = tts(tts_mdl, answer)
        yield res


def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
    sys_prompt = "你是一个DBA。你需要这对以下表的字段结构,根据用户的问题列表,写出最后一个问题对应的SQL。"
    user_promt = """
表名:{};
数据库表字段说明如下:
{}

问题如下:
{}
请写出SQL, 且只要SQL,不要有其他说明及文字。
""".format(
        index_name(tenant_id),
        "\n".join([f"{k}: {v}" for k, v in field_map.items()]),
        question
    )
    tried_times = 0

    def get_table():
        nonlocal sys_prompt, user_promt, question, tried_times
        sql = chat_mdl.chat(sys_prompt, [{"role": "user", "content": user_promt}], {
            "temperature": 0.06})
        logging.debug(f"{question} ==> {user_promt} get SQL: {sql}")
        sql = re.sub(r"[\r\n]+", " ", sql.lower())
        sql = re.sub(r".*select ", "select ", sql.lower())
        sql = re.sub(r" +", " ", sql)
        sql = re.sub(r"([;;]|```).*", "", sql)
        if sql[:len("select ")] != "select ":
            return None, None
        if not re.search(r"((sum|avg|max|min)\(|group by )", sql.lower()):
            if sql[:len("select *")] != "select *":
                sql = "select doc_id,docnm_kwd," + sql[6:]
            else:
                flds = []
                for k in field_map.keys():
                    if k in forbidden_select_fields4resume:
                        continue
                    if len(flds) > 11:
                        break
                    flds.append(k)
                sql = "select doc_id,docnm_kwd," + ",".join(flds) + sql[8:]

        logging.debug(f"{question} get SQL(refined): {sql}")
        tried_times += 1
        return settings.retrievaler.sql_retrieval(sql, format="json"), sql

    tbl, sql = get_table()
    if tbl is None:
        return None
    if tbl.get("error") and tried_times <= 2:
        user_promt = """
        表名:{};
        数据库表字段说明如下:
        {}

        问题如下:
        {}

        你上一次给出的错误SQL如下:
        {}

        后台报错如下:
        {}

        请纠正SQL中的错误再写一遍,且只要SQL,不要有其他说明及文字。
        """.format(
            index_name(tenant_id),
            "\n".join([f"{k}: {v}" for k, v in field_map.items()]),
            question, sql, tbl["error"]
        )
        tbl, sql = get_table()
        logging.debug("TRY it again: {}".format(sql))

    logging.debug("GET table: {}".format(tbl))
    if tbl.get("error") or len(tbl["rows"]) == 0:
        return None

    docid_idx = set([ii for ii, c in enumerate(
        tbl["columns"]) if c["name"] == "doc_id"])
    docnm_idx = set([ii for ii, c in enumerate(
        tbl["columns"]) if c["name"] == "docnm_kwd"])
    clmn_idx = [ii for ii in range(
        len(tbl["columns"])) if ii not in (docid_idx | docnm_idx)]

    # compose markdown table
    clmns = "|" + "|".join([re.sub(r"(/.*|([^()]+))", "", field_map.get(tbl["columns"][i]["name"],
                                                                        tbl["columns"][i]["name"])) for i in
                            clmn_idx]) + ("|Source|" if docid_idx and docid_idx else "|")

    line = "|" + "|".join(["------" for _ in range(len(clmn_idx))]) + \
           ("|------|" if docid_idx and docid_idx else "")

    rows = ["|" +
            "|".join([rmSpace(str(r[i])) for i in clmn_idx]).replace("None", " ") +
            "|" for r in tbl["rows"]]
    rows = [r for r in rows if re.sub(r"[ |]+", "", r)]
    if quota:
        rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
    else:
        rows = "\n".join([r + f" ##{ii}$$ |" for ii, r in enumerate(rows)])
    rows = re.sub(r"T[0-9]{2}:[0-9]{2}:[0-9]{2}(\.[0-9]+Z)?\|", "|", rows)

    if not docid_idx or not docnm_idx:
        logging.warning("SQL missing field: " + sql)
        return {
            "answer": "\n".join([clmns, line, rows]),
            "reference": {"chunks": [], "doc_aggs": []},
            "prompt": sys_prompt
        }

    docid_idx = list(docid_idx)[0]
    docnm_idx = list(docnm_idx)[0]
    doc_aggs = {}
    for r in tbl["rows"]:
        if r[docid_idx] not in doc_aggs:
            doc_aggs[r[docid_idx]] = {"doc_name": r[docnm_idx], "count": 0}
        doc_aggs[r[docid_idx]]["count"] += 1
    return {
        "answer": "\n".join([clmns, line, rows]),
        "reference": {"chunks": [{"doc_id": r[docid_idx], "docnm_kwd": r[docnm_idx]} for r in tbl["rows"]],
                      "doc_aggs": [{"doc_id": did, "doc_name": d["doc_name"], "count": d["count"]} for did, d in
                                   doc_aggs.items()]},
        "prompt": sys_prompt
    }


def relevant(tenant_id, llm_id, question, contents: list):
    if llm_id2llm_type(llm_id) == "image2text":
        chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
    else:
        chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
    prompt = """
        You are a grader assessing relevance of a retrieved document to a user question. 
        It does not need to be a stringent test. The goal is to filter out erroneous retrievals.
        If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant. 
        Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.
        No other words needed except 'yes' or 'no'.
    """
    if not contents:return False
    contents = "Documents: \n" + "   - ".join(contents)
    contents = f"Question: {question}\n" + contents
    if num_tokens_from_string(contents) >= chat_mdl.max_length - 4:
        contents = encoder.decode(encoder.encode(contents)[:chat_mdl.max_length - 4])
    ans = chat_mdl.chat(prompt, [{"role": "user", "content": contents}], {"temperature": 0.01})
    if ans.lower().find("yes") >= 0: return True
    return False


def rewrite(tenant_id, llm_id, question):
    if llm_id2llm_type(llm_id) == "image2text":
        chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
    else:
        chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
    prompt = """
        You are an expert at query expansion to generate a paraphrasing of a question.
        I can't retrieval relevant information from the knowledge base by using user's question directly.     
        You need to expand or paraphrase user's question by multiple ways such as using synonyms words/phrase, 
        writing the abbreviation in its entirety, adding some extra descriptions or explanations, 
        changing the way of expression, translating the original question into another language (English/Chinese), etc. 
        And return 5 versions of question and one is from translation.
        Just list the question. No other words are needed.
    """
    ans = chat_mdl.chat(prompt, [{"role": "user", "content": question}], {"temperature": 0.8})
    return ans


def keyword_extraction(chat_mdl, content, topn=3):
    prompt = f"""
Role: You're a text analyzer. 
Task: extract the most important keywords/phrases of a given piece of text content.
Requirements: 
  - Summarize the text content, and give top {topn} important keywords/phrases.
  - The keywords MUST be in language of the given piece of text content.
  - The keywords are delimited by ENGLISH COMMA.
  - Keywords ONLY in output.

### Text Content 
{content}

"""
    msg = [
        {"role": "system", "content": prompt},
        {"role": "user", "content": "Output: "}
    ]
    _, msg = message_fit_in(msg, chat_mdl.max_length)
    kwd = chat_mdl.chat(prompt, msg[1:], {"temperature": 0.2})
    if isinstance(kwd, tuple): kwd = kwd[0]
    if kwd.find("**ERROR**") >=0: return ""
    return kwd


def question_proposal(chat_mdl, content, topn=3):
    prompt = f"""
Role: You're a text analyzer. 
Task:  propose {topn} questions about a given piece of text content.
Requirements: 
  - Understand and summarize the text content, and propose top {topn} important questions.
  - The questions SHOULD NOT have overlapping meanings.
  - The questions SHOULD cover the main content of the text as much as possible.
  - The questions MUST be in language of the given piece of text content.
  - One question per line.
  - Question ONLY in output.

### Text Content 
{content}

"""
    msg = [
        {"role": "system", "content": prompt},
        {"role": "user", "content": "Output: "}
    ]
    _, msg = message_fit_in(msg, chat_mdl.max_length)
    kwd = chat_mdl.chat(prompt, msg[1:], {"temperature": 0.2})
    if isinstance(kwd, tuple): kwd = kwd[0]
    if kwd.find("**ERROR**") >= 0: return ""
    return kwd


def full_question(tenant_id, llm_id, messages):
    if llm_id2llm_type(llm_id) == "image2text":
        chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
    else:
        chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
    conv = []
    for m in messages:
        if m["role"] not in ["user", "assistant"]: continue
        conv.append("{}: {}".format(m["role"].upper(), m["content"]))
    conv = "\n".join(conv)
    today = datetime.date.today().isoformat()
    yesterday = (datetime.date.today() - timedelta(days=1)).isoformat()
    tomorrow = (datetime.date.today() + timedelta(days=1)).isoformat()
    prompt = f"""
Role: A helpful assistant

Task and steps: 
    1. Generate a full user question that would follow the conversation.
    2. If the user's question involves relative date, you need to convert it into absolute date based on the current date, which is {today}. For example: 'yesterday' would be converted to {yesterday}.
    
Requirements & Restrictions:
  - Text generated MUST be in the same language of the original user's question.
  - If the user's latest question is completely, don't do anything, just return the original question.
  - DON'T generate anything except a refined question.

######################
-Examples-
######################

# Example 1
## Conversation
USER: What is the name of Donald Trump's father?
ASSISTANT:  Fred Trump.
USER: And his mother?
###############
Output: What's the name of Donald Trump's mother?

------------
# Example 2
## Conversation
USER: What is the name of Donald Trump's father?
ASSISTANT:  Fred Trump.
USER: And his mother?
ASSISTANT:  Mary Trump.
User: What's her full name?
###############
Output: What's the full name of Donald Trump's mother Mary Trump?

------------
# Example 3
## Conversation
USER: What's the weather today in London?
ASSISTANT:  Cloudy.
USER: What's about tomorrow in Rochester?
###############
Output: What's the weather in Rochester on {tomorrow}?
######################

# Real Data
## Conversation
{conv}
###############
    """
    ans = chat_mdl.chat(prompt, [{"role": "user", "content": "Output: "}], {"temperature": 0.2})
    return ans if ans.find("**ERROR**") < 0 else messages[-1]["content"]


def tts(tts_mdl, text):
    if not tts_mdl or not text: return
    bin = b""
    for chunk in tts_mdl.tts(text):
        bin += chunk
    return binascii.hexlify(bin).decode("utf-8")


def ask(question, kb_ids, tenant_id):
    kbs = KnowledgebaseService.get_by_ids(kb_ids)
    tenant_ids = [kb.tenant_id for kb in kbs]
    embd_nms = list(set([kb.embd_id for kb in kbs]))

    is_kg = all([kb.parser_id == ParserType.KG for kb in kbs])
    retr = settings.retrievaler if not is_kg else settings.kg_retrievaler

    embd_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embd_nms[0])
    chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
    max_tokens = chat_mdl.max_length

    kbinfos = retr.retrieval(question, embd_mdl, tenant_ids, kb_ids, 1, 12, 0.1, 0.3, aggs=False)
    knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]

    used_token_count = 0
    for i, c in enumerate(knowledges):
        used_token_count += num_tokens_from_string(c)
        if max_tokens * 0.97 < used_token_count:
            knowledges = knowledges[:i]
            break

    prompt = """
    Role: You're a smart assistant. Your name is Miss R.
    Task: Summarize the information from knowledge bases and answer user's question.
    Requirements and restriction:
      - DO NOT make things up, especially for numbers.
      - If the information from knowledge is irrelevant with user's question, JUST SAY: Sorry, no relevant information provided.
      - Answer with markdown format text.
      - Answer in language of user's question.
      - DO NOT make things up, especially for numbers.
      
    ### Information from knowledge bases
    %s
    
    The above is information from knowledge bases.
     
    """%"\n".join(knowledges)
    msg = [{"role": "user", "content": question}]

    def decorate_answer(answer):
        nonlocal knowledges, kbinfos, prompt
        answer, idx = retr.insert_citations(answer,
                                           [ck["content_ltks"]
                                            for ck in kbinfos["chunks"]],
                                           [ck["vector"]
                                            for ck in kbinfos["chunks"]],
                                           embd_mdl,
                                           tkweight=0.7,
                                           vtweight=0.3)
        idx = set([kbinfos["chunks"][int(i)]["doc_id"] for i in idx])
        recall_docs = [
            d for d in kbinfos["doc_aggs"] if d["doc_id"] in idx]
        if not recall_docs: recall_docs = kbinfos["doc_aggs"]
        kbinfos["doc_aggs"] = recall_docs
        refs = deepcopy(kbinfos)
        for c in refs["chunks"]:
            if c.get("vector"):
                del c["vector"]

        if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
            answer += " Please set LLM API-Key in 'User Setting -> Model providers -> API-Key'"
        return {"answer": answer, "reference": refs}

    answer = ""
    for ans in chat_mdl.chat_streamly(prompt, msg, {"temperature": 0.1}):
        answer = ans
        yield {"answer": answer, "reference": {}}
    yield decorate_answer(answer)