File size: 7,677 Bytes
aeb6dbc 8bc2fc9 8b574ab aeb6dbc 6101699 aeb6dbc 9bead83 8b574ab aeb6dbc 9bead83 aeb6dbc 8b574ab aeb6dbc 6101699 aeb6dbc 6101699 aeb6dbc 6101699 aeb6dbc 8bc2fc9 aeb6dbc 8bc2fc9 aeb6dbc 6101699 aeb6dbc 8bc2fc9 aeb6dbc 8bc2fc9 22fe41e aeb6dbc 8a4c42a 22fe41e aeb6dbc 22fe41e aeb6dbc 22fe41e aeb6dbc 8a4c42a aeb6dbc 4a4d1d6 aeb6dbc 22fe41e aeb6dbc 22fe41e 8bc2fc9 aeb6dbc 6101699 9bead83 aeb6dbc 8bc2fc9 aeb6dbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import base64
import json
import os
import time
import uuid
from copy import deepcopy
from api.db import LLMType, UserTenantRole
from api.db.db_models import init_database_tables as init_web_db, LLMFactories, LLM, TenantLLM
from api.db.services import UserService
from api.db.services.canvas_service import CanvasTemplateService
from api.db.services.document_service import DocumentService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMFactoriesService, LLMService, TenantLLMService, LLMBundle
from api.db.services.user_service import TenantService, UserTenantService
from api import settings
from api.utils.file_utils import get_project_base_directory
def encode_to_base64(input_string):
base64_encoded = base64.b64encode(input_string.encode('utf-8'))
return base64_encoded.decode('utf-8')
def init_superuser():
user_info = {
"id": uuid.uuid1().hex,
"password": encode_to_base64("admin"),
"nickname": "admin",
"is_superuser": True,
"email": "[email protected]",
"creator": "system",
"status": "1",
}
tenant = {
"id": user_info["id"],
"name": user_info["nickname"] + "‘s Kingdom",
"llm_id": settings.CHAT_MDL,
"embd_id": settings.EMBEDDING_MDL,
"asr_id": settings.ASR_MDL,
"parser_ids": settings.PARSERS,
"img2txt_id": settings.IMAGE2TEXT_MDL
}
usr_tenant = {
"tenant_id": user_info["id"],
"user_id": user_info["id"],
"invited_by": user_info["id"],
"role": UserTenantRole.OWNER
}
tenant_llm = []
for llm in LLMService.query(fid=settings.LLM_FACTORY):
tenant_llm.append(
{"tenant_id": user_info["id"], "llm_factory": settings.LLM_FACTORY, "llm_name": llm.llm_name,
"model_type": llm.model_type,
"api_key": settings.API_KEY, "api_base": settings.LLM_BASE_URL})
if not UserService.save(**user_info):
logging.error("can't init admin.")
return
TenantService.insert(**tenant)
UserTenantService.insert(**usr_tenant)
TenantLLMService.insert_many(tenant_llm)
logging.info(
"Super user initialized. email: [email protected], password: admin. Changing the password after login is strongly recommended.")
chat_mdl = LLMBundle(tenant["id"], LLMType.CHAT, tenant["llm_id"])
msg = chat_mdl.chat(system="", history=[
{"role": "user", "content": "Hello!"}], gen_conf={})
if msg.find("ERROR: ") == 0:
logging.error(
"'{}' dosen't work. {}".format(
tenant["llm_id"],
msg))
embd_mdl = LLMBundle(tenant["id"], LLMType.EMBEDDING, tenant["embd_id"])
v, c = embd_mdl.encode(["Hello!"])
if c == 0:
logging.error(
"'{}' dosen't work!".format(
tenant["embd_id"]))
def init_llm_factory():
try:
LLMService.filter_delete([(LLM.fid == "MiniMax" or LLM.fid == "Minimax")])
LLMService.filter_delete([(LLM.fid == "cohere")])
LLMFactoriesService.filter_delete([LLMFactories.name == "cohere"])
except Exception:
pass
factory_llm_infos = json.load(
open(
os.path.join(get_project_base_directory(), "conf", "llm_factories.json"),
"r",
)
)
for factory_llm_info in factory_llm_infos["factory_llm_infos"]:
llm_infos = factory_llm_info.pop("llm")
try:
LLMFactoriesService.save(**factory_llm_info)
except Exception:
pass
LLMService.filter_delete([LLM.fid == factory_llm_info["name"]])
for llm_info in llm_infos:
llm_info["fid"] = factory_llm_info["name"]
try:
LLMService.save(**llm_info)
except Exception:
pass
LLMFactoriesService.filter_delete([LLMFactories.name == "Local"])
LLMService.filter_delete([LLM.fid == "Local"])
LLMService.filter_delete([LLM.llm_name == "qwen-vl-max"])
LLMService.filter_delete([LLM.fid == "Moonshot", LLM.llm_name == "flag-embedding"])
TenantLLMService.filter_delete([TenantLLM.llm_factory == "Moonshot", TenantLLM.llm_name == "flag-embedding"])
LLMFactoriesService.filter_delete([LLMFactoriesService.model.name == "QAnything"])
LLMService.filter_delete([LLMService.model.fid == "QAnything"])
TenantLLMService.filter_update([TenantLLMService.model.llm_factory == "QAnything"], {"llm_factory": "Youdao"})
TenantLLMService.filter_update([TenantLLMService.model.llm_factory == "cohere"], {"llm_factory": "Cohere"})
TenantService.filter_update([1 == 1], {
"parser_ids": "naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,knowledge_graph:Knowledge Graph,email:Email"})
## insert openai two embedding models to the current openai user.
# print("Start to insert 2 OpenAI embedding models...")
tenant_ids = set([row["tenant_id"] for row in TenantLLMService.get_openai_models()])
for tid in tenant_ids:
for row in TenantLLMService.query(llm_factory="OpenAI", tenant_id=tid):
row = row.to_dict()
row["model_type"] = LLMType.EMBEDDING.value
row["llm_name"] = "text-embedding-3-small"
row["used_tokens"] = 0
try:
TenantLLMService.save(**row)
row = deepcopy(row)
row["llm_name"] = "text-embedding-3-large"
TenantLLMService.save(**row)
except Exception:
pass
break
for kb_id in KnowledgebaseService.get_all_ids():
KnowledgebaseService.update_by_id(kb_id, {"doc_num": DocumentService.get_kb_doc_count(kb_id)})
"""
drop table llm;
drop table llm_factories;
update tenant set parser_ids='naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,knowledge_graph:Knowledge Graph';
alter table knowledgebase modify avatar longtext;
alter table user modify avatar longtext;
alter table dialog modify icon longtext;
"""
def add_graph_templates():
dir = os.path.join(get_project_base_directory(), "agent", "templates")
for fnm in os.listdir(dir):
try:
cnvs = json.load(open(os.path.join(dir, fnm), "r"))
try:
CanvasTemplateService.save(**cnvs)
except:
CanvasTemplateService.update_by_id(cnvs["id"], cnvs)
except Exception:
logging.exception("Add graph templates error: ")
def init_web_data():
start_time = time.time()
init_llm_factory()
# if not UserService.get_all().count():
# init_superuser()
add_graph_templates()
logging.info("init web data success:{}".format(time.time() - start_time))
if __name__ == '__main__':
init_web_db()
init_web_data()
|