File size: 8,086 Bytes
a3ebd45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95863fc
a3ebd45
 
6054f54
a3ebd45
 
 
 
 
 
 
 
 
 
 
255441a
 
 
 
 
a3ebd45
255441a
a3ebd45
 
255441a
 
 
 
 
 
 
a3ebd45
 
255441a
 
 
 
 
 
 
a3ebd45
 
 
 
 
f586a68
 
 
 
87d8c78
2cbcd9d
ce5e150
 
87d8c78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3ebd45
 
 
 
70153b9
 
255441a
 
6229599
 
 
255441a
a68b28a
 
 
70153b9
 
d832ef1
70153b9
 
 
 
 
a3ebd45
 
95863fc
a3ebd45
70153b9
 
 
 
 
 
b5e86a6
87d8c78
 
a3ebd45
 
fc6e68a
 
 
a57190d
a3ebd45
95863fc
 
eb1f8d0
95863fc
 
a3ebd45
a57190d
 
a3ebd45
 
 
 
 
fc6e68a
 
 
a3ebd45
 
 
 
95863fc
 
eb1f8d0
a3ebd45
95863fc
a3ebd45
 
 
 
 
87d8c78
a3ebd45
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import re
from functools import partial
import pandas as pd
from api.db import LLMType
from api.db.services.dialog_service import message_fit_in
from api.db.services.llm_service import LLMBundle
from api.settings import retrievaler
from agent.component.base import ComponentBase, ComponentParamBase


class GenerateParam(ComponentParamBase):
    """
    Define the Generate component parameters.
    """

    def __init__(self):
        super().__init__()
        self.llm_id = ""
        self.prompt = ""
        self.max_tokens = 0
        self.temperature = 0
        self.top_p = 0
        self.presence_penalty = 0
        self.frequency_penalty = 0
        self.cite = True
        self.parameters = []

    def check(self):
        self.check_decimal_float(self.temperature, "[Generate] Temperature")
        self.check_decimal_float(self.presence_penalty, "[Generate] Presence penalty")
        self.check_decimal_float(self.frequency_penalty, "[Generate] Frequency penalty")
        self.check_nonnegative_number(self.max_tokens, "[Generate] Max tokens")
        self.check_decimal_float(self.top_p, "[Generate] Top P")
        self.check_empty(self.llm_id, "[Generate] LLM")
        # self.check_defined_type(self.parameters, "Parameters", ["list"])

    def gen_conf(self):
        conf = {}
        if self.max_tokens > 0: conf["max_tokens"] = self.max_tokens
        if self.temperature > 0: conf["temperature"] = self.temperature
        if self.top_p > 0: conf["top_p"] = self.top_p
        if self.presence_penalty > 0: conf["presence_penalty"] = self.presence_penalty
        if self.frequency_penalty > 0: conf["frequency_penalty"] = self.frequency_penalty
        return conf


class Generate(ComponentBase):
    component_name = "Generate"

    def get_dependent_components(self):
        cpnts = [para["component_id"] for para in self._param.parameters]
        return cpnts

    def set_cite(self, retrieval_res, answer):
        retrieval_res = retrieval_res.dropna(subset=["vector", "content_ltks"]).reset_index(drop=True)
        if "empty_response" in retrieval_res.columns:
            retrieval_res["empty_response"].fillna("", inplace=True)
        answer, idx = retrievaler.insert_citations(answer, [ck["content_ltks"] for _, ck in retrieval_res.iterrows()],
                                                   [ck["vector"] for _, ck in retrieval_res.iterrows()],
                                                   LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING,
                                                             self._canvas.get_embedding_model()), tkweight=0.7,
                                                   vtweight=0.3)
        doc_ids = set([])
        recall_docs = []
        for i in idx:
            did = retrieval_res.loc[int(i), "doc_id"]
            if did in doc_ids: continue
            doc_ids.add(did)
            recall_docs.append({"doc_id": did, "doc_name": retrieval_res.loc[int(i), "docnm_kwd"]})

        del retrieval_res["vector"]
        del retrieval_res["content_ltks"]

        reference = {
            "chunks": [ck.to_dict() for _, ck in retrieval_res.iterrows()],
            "doc_aggs": recall_docs
        }

        if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
            answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
        res = {"content": answer, "reference": reference}

        return res

    def _run(self, history, **kwargs):
        chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
        prompt = self._param.prompt

        retrieval_res = []
        self._param.inputs = []
        for para in self._param.parameters:
            cpn = self._canvas.get_component(para["component_id"])["obj"]
            if cpn.component_name.lower() == "answer":
                kwargs[para["key"]] = self._canvas.get_history(1)[0]["content"]
                continue
            _, out = cpn.output(allow_partial=False)
            if "content" not in out.columns:
                kwargs[para["key"]] = "Nothing"
            else:
                if cpn.component_name.lower() == "retrieval":
                    retrieval_res.append(out)
                kwargs[para["key"]] = "  - "+"\n - ".join([o if isinstance(o, str) else str(o) for o in out["content"]])
            self._param.inputs.append({"component_id": para["component_id"], "content": kwargs[para["key"]]})

        if retrieval_res:
            retrieval_res = pd.concat(retrieval_res, ignore_index=True)
        else: retrieval_res = pd.DataFrame([])

        for n, v in kwargs.items():
            prompt = re.sub(r"\{%s\}" % re.escape(n), re.escape(str(v)), prompt)

        if not self._param.inputs and prompt.find("{input}") >= 0:
            retrieval_res = self.get_input()
            input = ("  - " + "\n  - ".join(
                [c for c in retrieval_res["content"] if isinstance(c, str)])) if "content" in retrieval_res else ""
            prompt = re.sub(r"\{input\}", re.escape(input), prompt)

        downstreams = self._canvas.get_component(self._id)["downstream"]
        if kwargs.get("stream") and len(downstreams) == 1 and self._canvas.get_component(downstreams[0])[
            "obj"].component_name.lower() == "answer":
            return partial(self.stream_output, chat_mdl, prompt, retrieval_res)

        if "empty_response" in retrieval_res.columns and not "".join(retrieval_res["content"]):
            res = {"content": "\n- ".join(retrieval_res["empty_response"]) if "\n- ".join(
                retrieval_res["empty_response"]) else "Nothing found in knowledgebase!", "reference": []}
            return pd.DataFrame([res])

        msg = self._canvas.get_history(self._param.message_history_window_size)
        _, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(chat_mdl.max_length * 0.97))
        if len(msg) < 2: msg.append({"role": "user", "content": ""})
        ans = chat_mdl.chat(msg[0]["content"], msg[1:], self._param.gen_conf())

        if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
            res = self.set_cite(retrieval_res, ans)
            return pd.DataFrame([res])

        return Generate.be_output(ans)

    def stream_output(self, chat_mdl, prompt, retrieval_res):
        res = None
        if "empty_response" in retrieval_res.columns and not "".join(retrieval_res["content"]):
            res = {"content": "\n- ".join(retrieval_res["empty_response"]) if "\n- ".join(
                retrieval_res["empty_response"]) else "Nothing found in knowledgebase!", "reference": []}
            yield res
            self.set_output(res)
            return

        msg = self._canvas.get_history(self._param.message_history_window_size)
        _, msg = message_fit_in([{"role": "system", "content": prompt}, *msg], int(chat_mdl.max_length * 0.97))
        if len(msg) < 2: msg.append({"role": "user", "content": ""})
        answer = ""
        for ans in chat_mdl.chat_streamly(msg[0]["content"], msg[1:], self._param.gen_conf()):
            res = {"content": ans, "reference": []}
            answer = ans
            yield res

        if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
            res = self.set_cite(retrieval_res, answer)
            yield res

        self.set_output(res)