File size: 11,188 Bytes
2fd3125
8f39e7a
8f9784a
2fd3125
 
8887e47
2fd3125
 
591cbef
 
2fd3125
8887e47
2fd3125
6cfad3c
26558c7
 
8f39e7a
3accb26
2fd3125
ebbe7cb
 
2fd3125
ebbe7cb
2fd3125
 
c957852
e5aa7c3
99b8bda
376c8b6
2fd3125
a70ad43
 
e346b5a
a70ad43
 
 
 
 
 
 
 
 
c957852
cfbf213
1311113
cfbf213
c2e2def
cfbf213
7d2bd69
1311113
cfbf213
 
 
7d2bd69
1311113
cfbf213
 
 
7d2bd69
1311113
cfbf213
 
7d2bd69
1311113
cfbf213
 
 
 
 
8887e47
c957852
99b8bda
c957852
 
 
99b8bda
 
2fd3125
c957852
 
d54aa01
94f8c29
48a7cc7
1daa4bd
7943d52
e5aa7c3
7d2bd69
e5aa7c3
1cc01e0
e5aa7c3
 
 
cfbf213
e5aa7c3
 
 
1cc01e0
e5aa7c3
 
 
 
 
 
 
 
 
 
 
 
 
c957852
 
 
 
 
cfbf213
c957852
f31a705
 
d3d8d70
 
640c593
d3d8d70
 
f31a705
2fd3125
1cc01e0
d3d8d70
e3fa72e
cfbf213
d3d8d70
e5aa7c3
d3d8d70
cfbf213
 
ce95639
7943d52
cfbf213
7943d52
 
cfbf213
 
 
 
7943d52
 
8f9784a
7943d52
cfbf213
01957f5
2fd3125
8f9784a
01957f5
7d2bd69
cfbf213
7d2bd69
8f39e7a
cfbf213
e06e08c
99b8bda
8f39e7a
7943d52
 
 
 
e3fa72e
7943d52
cfbf213
c957852
7d2bd69
2fd3125
830d3c7
f1ccc7f
7943d52
cfbf213
7943d52
 
 
f1ccc7f
e5aa7c3
 
 
 
 
 
 
d88713b
e5aa7c3
640c593
e5aa7c3
 
 
5aa2501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cad30e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
236885d
8f9784a
376c8b6
236885d
8f9784a
99b8bda
2fd3125
e5aa7c3
2fd3125
c957852
2fd3125
b0f30f5
c957852
2fd3125
99b8bda
2fd3125
93339b0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
<div align="center">
<a href="https://demo.ragflow.io/">
<img src="web/src/assets/logo-with-text.png" width="520" alt="ragflow logo">
</a>
</div>

<p align="center">
  <a href="./README.md">English</a> |
  <a href="./README_zh.md">็ฎ€ไฝ“ไธญๆ–‡</a> |
  <a href="./README_ja.md">ๆ—ฅๆœฌ่ชž</a>
</p>

<p align="center">
    <a href="https://github.com/infiniflow/ragflow/releases/latest">

        <img src="https://img.shields.io/github/v/release/infiniflow/ragflow?color=blue&label=Latest%20Release" alt="Latest Release">

    </a>

    <a href="https://demo.ragflow.io" target="_blank">

        <img alt="Static Badge" src="https://img.shields.io/badge/Online-Demo-4e6b99"></a>

    <a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">

        <img src="https://img.shields.io/badge/docker_pull-ragflow:v0.5.0-brightgreen"

            alt="docker pull infiniflow/ragflow:v0.5.0"></a>

      <a href="https://github.com/infiniflow/ragflow/blob/main/LICENSE">

    <img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?style=flat-square&labelColor=d4eaf7&color=1570EF" alt="license">

  </a>

</p>


## ๐Ÿ’ก What is RAGFlow?

[RAGFlow](https://ragflow.io/) is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding. It offers a streamlined RAG workflow for businesses of any scale, combining LLM (Large Language Models) to provide truthful question-answering capabilities, backed by well-founded citations from various complex formatted data.

## ๐Ÿ“Œ Latest Updates

- 2024-05-15 Integrates OpenAI GPT-4o.
- 2024-05-08 Integrates LLM DeepSeek-V2.
- 2024-04-26 Adds file management.
- 2024-04-19 Supports conversation API ([detail](./docs/conversation_api.md)).
- 2024-04-16 Integrates an embedding model 'bce-embedding-base_v1' from [BCEmbedding](https://github.com/netease-youdao/BCEmbedding), and [FastEmbed](https://github.com/qdrant/fastembed), which is designed specifically for light and speedy embedding.

- 2024-04-11 Supports [Xinference](./docs/xinference.md) for local LLM deployment.

- 2024-04-10 Adds a new layout recognition model for analyzing legal documents.

- 2024-04-08 Supports [Ollama](./docs/ollama.md) for local LLM deployment.

- 2024-04-07 Supports Chinese UI.



## ๐ŸŒŸ Key Features



### ๐Ÿญ **"Quality in, quality out"**



- [Deep document understanding](./deepdoc/README.md)-based knowledge extraction from unstructured data with complicated formats.

- Finds "needle in a data haystack" of literally unlimited tokens.



### ๐Ÿฑ **Template-based chunking**



- Intelligent and explainable.

- Plenty of template options to choose from.



### ๐ŸŒฑ **Grounded citations with reduced hallucinations**



- Visualization of text chunking to allow human intervention.

- Quick view of the key references and traceable citations to support grounded answers.



### ๐Ÿ” **Compatibility with heterogeneous data sources**



- Supports Word, slides, excel, txt, images, scanned copies, structured data, web pages, and more.



### ๐Ÿ›€ **Automated and effortless RAG workflow**



- Streamlined RAG orchestration catered to both personal and large businesses.

- Configurable LLMs as well as embedding models.

- Multiple recall paired with fused re-ranking.

- Intuitive APIs for seamless integration with business.



## ๐Ÿ”Ž System Architecture



<div align="center" style="margin-top:20px;margin-bottom:20px;">

<img src="https://github.com/infiniflow/ragflow/assets/12318111/d6ac5664-c237-4200-a7c2-a4a00691b485" width="1000"/>

</div>



## ๐ŸŽฌ Get Started



### ๐Ÿ“ Prerequisites



- CPU >= 4 cores

- RAM >= 16 GB

- Disk >= 50 GB

- Docker >= 24.0.0 & Docker Compose >= v2.26.1

  > If you have not installed Docker on your local machine (Windows, Mac, or Linux), see [Install Docker Engine](https://docs.docker.com/engine/install/).



### ๐Ÿš€ Start up the server



1. Ensure `vm.max_map_count` >= 262144 ([more](./docs/max_map_count.md)):



   > To check the value of `vm.max_map_count`:

   >

   > ```bash

   > $ sysctl vm.max_map_count

   > ```

   >

   > Reset `vm.max_map_count` to a value at least 262144 if it is not.

   >

   > ```bash

   > # In this case, we set it to 262144:

   > $ sudo sysctl -w vm.max_map_count=262144

   > ```

   >

   > This change will be reset after a system reboot. To ensure your change remains permanent, add or update the `vm.max_map_count` value in **/etc/sysctl.conf** accordingly:

   >

   > ```bash

   > vm.max_map_count=262144

   > ```



2. Clone the repo:



   ```bash

   $ git clone https://github.com/infiniflow/ragflow.git

   ```



3. Build the pre-built Docker images and start up the server:



   > Running the following commands automatically downloads the *dev* version RAGFlow Docker image. To download and run a specified Docker version, update `RAGFLOW_VERSION` in **docker/.env** to the intended version, for example `RAGFLOW_VERSION=v0.5.0`, before running the following commands.



   ```bash

   $ cd ragflow/docker

   $ chmod +x ./entrypoint.sh

   $ docker compose up -d

   ```

   



   > The core image is about 9 GB in size and may take a while to load.



4. Check the server status after having the server up and running:



   ```bash

   $ docker logs -f ragflow-server

   ```



   _The following output confirms a successful launch of the system:_

   ```bash

       ____                 ______ __

      / __ \ ____ _ ____ _ / ____// /____  _      __

     / /_/ // __ `// __ `// /_   / // __ \| | /| / /

    / _, _// /_/ // /_/ // __/  / // /_/ /| |/ |/ /

   /_/ |_| \__,_/ \__, //_/    /_/ \____/ |__/|__/

                 /____/



    * Running on all addresses (0.0.0.0)

    * Running on http://127.0.0.1:9380

    * Running on http://x.x.x.x:9380

    INFO:werkzeug:Press CTRL+C to quit

   ```
   > If you skip this confirmation step and directly log in to RAGFlow, your browser may prompt a `network anomaly` error because, at that moment, your RAGFlow may not be fully initialized.  

5. In your web browser, enter the IP address of your server and log in to RAGFlow.
   > With default settings, you only need to enter `http://IP_OF_YOUR_MACHINE` (**sans** port number) as the default HTTP serving port `80` can be omitted when using the default configurations.
6. In [service_conf.yaml](./docker/service_conf.yaml), select the desired LLM factory in `user_default_llm` and update the `API_KEY` field with the corresponding API key.

   > See [./docs/llm_api_key_setup.md](./docs/llm_api_key_setup.md) for more information.

   _The show is now on!_

## ๐Ÿ”ง Configurations

When it comes to system configurations, you will need to manage the following files:

- [.env](./docker/.env): Keeps the fundamental setups for the system, such as `SVR_HTTP_PORT`, `MYSQL_PASSWORD`, and `MINIO_PASSWORD`.
- [service_conf.yaml](./docker/service_conf.yaml): Configures the back-end services.
- [docker-compose.yml](./docker/docker-compose.yml): The system relies on [docker-compose.yml](./docker/docker-compose.yml) to start up.

You must ensure that changes to the [.env](./docker/.env) file are in line with what are in the [service_conf.yaml](./docker/service_conf.yaml) file.

> The [./docker/README](./docker/README.md) file provides a detailed description of the environment settings and service configurations, and you are REQUIRED to ensure that all environment settings listed in the [./docker/README](./docker/README.md) file are aligned with the corresponding configurations in the [service_conf.yaml](./docker/service_conf.yaml) file.

To update the default HTTP serving port (80), go to [docker-compose.yml](./docker/docker-compose.yml) and change `80:80` to `<YOUR_SERVING_PORT>:80`.

> Updates to all system configurations require a system reboot to take effect:
>

> ```bash
> $ docker-compose up -d
> ```

## ๐Ÿ› ๏ธ Build from source

To build the Docker images from source:

```bash

$ git clone https://github.com/infiniflow/ragflow.git

$ cd ragflow/

$ docker build -t infiniflow/ragflow:dev .

$ cd ragflow/docker

$ chmod +x ./entrypoint.sh

$ docker compose up -d

```

## ๐Ÿ› ๏ธ Launch Service from Source

To launch the service from source, please follow these steps:

1. Clone the repository
```bash

$ git clone https://github.com/infiniflow/ragflow.git

$ cd ragflow/

```

2. Create a virtual environment (ensure Anaconda or Miniconda is installed)
```bash

$ conda create -n ragflow python=3.11.0

$ conda activate ragflow

$ pip install -r requirements.txt

```
If CUDA version is greater than 12.0, execute the following additional commands:
```bash

$ pip uninstall -y onnxruntime-gpu

$ pip install onnxruntime-gpu --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/

```

3. Copy the entry script and configure environment variables
```bash

$ cp docker/entrypoint.sh .

$ vi entrypoint.sh

```
Use the following commands to obtain the Python path and the ragflow project path:
```bash

$ which python

$ pwd

```

Set the output of `which python` as the value for `PY` and the output of `pwd` as the value for `PYTHONPATH`.

If `LD_LIBRARY_PATH` is already configured, it can be commented out.

```bash

# Adjust configurations according to your actual situation; the two export commands are newly added.

PY=${PY}

export PYTHONPATH=${PYTHONPATH}

# Optional: Add Hugging Face mirror

export HF_ENDPOINT=https://hf-mirror.com

```

4. Start the base services
```bash

$ cd docker

$ docker compose -f docker-compose-base.yml up -d 

```

5. Check the configuration files
Ensure that the settings in **docker/.env** match those in **conf/service_conf.yaml**. The IP addresses and ports for related services in **service_conf.yaml** should be changed to the local machine IP and ports exposed by the container.

6. Launch the service
```bash

$ chmod +x ./entrypoint.sh

$ bash ./entrypoint.sh

```

7. Start the WebUI service
```bash

$ cd web

$ npm install --registry=https://registry.npmmirror.com --force

$ vim .umirc.ts

# Modify proxy.target to 127.0.0.1:9380

$ npm run dev 

```

8. Deploy the WebUI service
```bash

$ cd web

$ npm install --registry=https://registry.npmmirror.com --force

$ umi build

$ mkdir -p /ragflow/web

$ cp -r dist /ragflow/web

$ apt install nginx -y

$ cp ../docker/nginx/proxy.conf /etc/nginx

$ cp ../docker/nginx/nginx.conf /etc/nginx

$ cp ../docker/nginx/ragflow.conf /etc/nginx/conf.d

$ systemctl start nginx

```

## ๐Ÿ“š Documentation

- [Quickstart](./docs/quickstart.md)
- [FAQ](./docs/faq.md)

## ๐Ÿ“œ Roadmap

See the [RAGFlow Roadmap 2024](https://github.com/infiniflow/ragflow/issues/162)

## ๐Ÿ„ Community

- [Discord](https://discord.gg/4XxujFgUN7)
- [Twitter](https://twitter.com/infiniflowai)

## ๐Ÿ™Œ Contributing

RAGFlow flourishes via open-source collaboration. In this spirit, we embrace diverse contributions from the community. If you would like to be a part, review our [Contribution Guidelines](https://github.com/infiniflow/ragflow/blob/main/docs/CONTRIBUTING.md) first.