File size: 14,464 Bytes
b691127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6101699
b691127
 
 
e023933
b691127
 
 
 
 
 
587bed3
b691127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6101699
b691127
 
 
 
 
 
4fd5400
b691127
 
 
08913be
 
 
 
b691127
 
08913be
b691127
 
 
 
 
 
 
6101699
 
 
b691127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6101699
b691127
 
 
 
 
6101699
b691127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6101699
b691127
 
 
 
6101699
b691127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6101699
b691127
 
 
 
6101699
b691127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a73da2
 
b691127
 
 
 
 
 
 
 
e023933
b691127
 
 
 
 
 
e023933
b691127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e023933
b691127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import json
import os
import sys
import time
import argparse
from collections import defaultdict

from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from api.db.services.knowledgebase_service import KnowledgebaseService
from api import settings
from api.utils import get_uuid
from rag.nlp import tokenize, search
from ranx import evaluate
from ranx import Qrels, Run
import pandas as pd
from tqdm import tqdm

global max_docs
max_docs = sys.maxsize


class Benchmark:
    def __init__(self, kb_id):
        self.kb_id = kb_id
        e, self.kb = KnowledgebaseService.get_by_id(kb_id)
        self.similarity_threshold = self.kb.similarity_threshold
        self.vector_similarity_weight = self.kb.vector_similarity_weight
        self.embd_mdl = LLMBundle(self.kb.tenant_id, LLMType.EMBEDDING, llm_name=self.kb.embd_id, lang=self.kb.language)
        self.tenant_id = ''
        self.index_name = ''
        self.initialized_index = False

    def _get_retrieval(self, qrels):
        # Need to wait for the ES and Infinity index to be ready
        time.sleep(20)
        run = defaultdict(dict)
        query_list = list(qrels.keys())
        for query in query_list:
            ranks = settings.retrievaler.retrieval(query, self.embd_mdl, self.tenant_id, [self.kb.id], 1, 30,
                                            0.0, self.vector_similarity_weight)
            if len(ranks["chunks"]) == 0:
                print(f"deleted query: {query}")
                del qrels[query]
                continue
            for c in ranks["chunks"]:
                c.pop("vector", None)
                run[query][c["chunk_id"]] = c["similarity"]
        return run

    def embedding(self, docs):
        texts = [d["content_with_weight"] for d in docs]
        embeddings, _ = self.embd_mdl.encode(texts)
        assert len(docs) == len(embeddings)
        vector_size = 0
        for i, d in enumerate(docs):
            v = embeddings[i]
            vector_size = len(v)
            d["q_%d_vec" % len(v)] = v
        return docs, vector_size

    def init_index(self, vector_size: int):
        if self.initialized_index:
            return
        if settings.docStoreConn.indexExist(self.index_name, self.kb_id):
            settings.docStoreConn.deleteIdx(self.index_name, self.kb_id)
        settings.docStoreConn.createIdx(self.index_name, self.kb_id, vector_size)
        self.initialized_index = True

    def ms_marco_index(self, file_path, index_name):
        qrels = defaultdict(dict)
        texts = defaultdict(dict)
        docs_count = 0
        docs = []
        filelist = sorted(os.listdir(file_path))

        for fn in filelist:
            if docs_count >= max_docs:
                break
            if not fn.endswith(".parquet"):
                continue
            data = pd.read_parquet(os.path.join(file_path, fn))
            for i in tqdm(range(len(data)), colour="green", desc="Tokenizing:" + fn):
                if docs_count >= max_docs:
                    break
                query = data.iloc[i]['query']
                for rel, text in zip(data.iloc[i]['passages']['is_selected'], data.iloc[i]['passages']['passage_text']):
                    d = {
                        "id": get_uuid(),
                        "kb_id": self.kb.id,
                        "docnm_kwd": "xxxxx",
                        "doc_id": "ksksks"
                    }
                    tokenize(d, text, "english")
                    docs.append(d)
                    texts[d["id"]] = text
                    qrels[query][d["id"]] = int(rel)
                if len(docs) >= 32:
                    docs_count += len(docs)
                    docs, vector_size = self.embedding(docs)
                    self.init_index(vector_size)
                    settings.docStoreConn.insert(docs, self.index_name, self.kb_id)
                    docs = []

        if docs:
            docs, vector_size = self.embedding(docs)
            self.init_index(vector_size)
            settings.docStoreConn.insert(docs, self.index_name, self.kb_id)
        return qrels, texts

    def trivia_qa_index(self, file_path, index_name):
        qrels = defaultdict(dict)
        texts = defaultdict(dict)
        docs_count = 0
        docs = []
        filelist = sorted(os.listdir(file_path))
        for fn in filelist:
            if docs_count >= max_docs:
                break
            if not fn.endswith(".parquet"):
                continue
            data = pd.read_parquet(os.path.join(file_path, fn))
            for i in tqdm(range(len(data)), colour="green", desc="Indexing:" + fn):
                if docs_count >= max_docs:
                    break
                query = data.iloc[i]['question']
                for rel, text in zip(data.iloc[i]["search_results"]['rank'],
                                     data.iloc[i]["search_results"]['search_context']):
                    d = {
                        "id": get_uuid(),
                        "kb_id": self.kb.id,
                        "docnm_kwd": "xxxxx",
                        "doc_id": "ksksks"
                    }
                    tokenize(d, text, "english")
                    docs.append(d)
                    texts[d["id"]] = text
                    qrels[query][d["id"]] = int(rel)
                if len(docs) >= 32:
                    docs_count += len(docs)
                    docs, vector_size = self.embedding(docs)
                    self.init_index(vector_size)
                    settings.docStoreConn.insert(docs,self.index_name)
                    docs = []

        docs, vector_size = self.embedding(docs)
        self.init_index(vector_size)
        settings.docStoreConn.insert(docs, self.index_name)
        return qrels, texts

    def miracl_index(self, file_path, corpus_path, index_name):
        corpus_total = {}
        for corpus_file in os.listdir(corpus_path):
            tmp_data = pd.read_json(os.path.join(corpus_path, corpus_file), lines=True)
            for index, i in tmp_data.iterrows():
                corpus_total[i['docid']] = i['text']

        topics_total = {}
        for topics_file in os.listdir(os.path.join(file_path, 'topics')):
            if 'test' in topics_file:
                continue
            tmp_data = pd.read_csv(os.path.join(file_path, 'topics', topics_file), sep='\t', names=['qid', 'query'])
            for index, i in tmp_data.iterrows():
                topics_total[i['qid']] = i['query']

        qrels = defaultdict(dict)
        texts = defaultdict(dict)
        docs_count = 0
        docs = []
        for qrels_file in os.listdir(os.path.join(file_path, 'qrels')):
            if 'test' in qrels_file:
                continue
            if docs_count >= max_docs:
                break

            tmp_data = pd.read_csv(os.path.join(file_path, 'qrels', qrels_file), sep='\t',
                                   names=['qid', 'Q0', 'docid', 'relevance'])
            for i in tqdm(range(len(tmp_data)), colour="green", desc="Indexing:" + qrels_file):
                if docs_count >= max_docs:
                    break
                query = topics_total[tmp_data.iloc[i]['qid']]
                text = corpus_total[tmp_data.iloc[i]['docid']]
                rel = tmp_data.iloc[i]['relevance']
                d = {
                    "id": get_uuid(),
                    "kb_id": self.kb.id,
                    "docnm_kwd": "xxxxx",
                    "doc_id": "ksksks"
                }
                tokenize(d, text, 'english')
                docs.append(d)
                texts[d["id"]] = text
                qrels[query][d["id"]] = int(rel)
                if len(docs) >= 32:
                    docs_count += len(docs)
                    docs, vector_size = self.embedding(docs)
                    self.init_index(vector_size)
                    settings.docStoreConn.insert(docs, self.index_name)
                    docs = []

        docs, vector_size = self.embedding(docs)
        self.init_index(vector_size)
        settings.docStoreConn.insert(docs, self.index_name)
        return qrels, texts

    def save_results(self, qrels, run, texts, dataset, file_path):
        keep_result = []
        run_keys = list(run.keys())
        for run_i in tqdm(range(len(run_keys)), desc="Calculating ndcg@10 for single query"):
            key = run_keys[run_i]
            keep_result.append({'query': key, 'qrel': qrels[key], 'run': run[key],
                                'ndcg@10': evaluate({key: qrels[key]}, {key: run[key]}, "ndcg@10")})
        keep_result = sorted(keep_result, key=lambda kk: kk['ndcg@10'])
        with open(os.path.join(file_path, dataset + 'result.md'), 'w', encoding='utf-8') as f:
            f.write('## Score For Every Query\n')
            for keep_result_i in keep_result:
                f.write('### query: ' + keep_result_i['query'] + ' ndcg@10:' + str(keep_result_i['ndcg@10']) + '\n')
                scores = [[i[0], i[1]] for i in keep_result_i['run'].items()]
                scores = sorted(scores, key=lambda kk: kk[1])
                for score in scores[:10]:
                    f.write('- text: ' + str(texts[score[0]]) + '\t qrel: ' + str(score[1]) + '\n')
        json.dump(qrels, open(os.path.join(file_path, dataset + '.qrels.json'), "w+", encoding='utf-8'), indent=2)
        json.dump(run, open(os.path.join(file_path, dataset + '.run.json'), "w+", encoding='utf-8'), indent=2)
        print(os.path.join(file_path, dataset + '_result.md'), 'Saved!')

    def __call__(self, dataset, file_path, miracl_corpus=''):
        if dataset == "ms_marco_v1.1":
            self.tenant_id = "benchmark_ms_marco_v11"
            self.index_name = search.index_name(self.tenant_id)
            qrels, texts = self.ms_marco_index(file_path, "benchmark_ms_marco_v1.1")
            run = self._get_retrieval(qrels)
            print(dataset, evaluate(Qrels(qrels), Run(run), ["ndcg@10", "map@5", "mrr@10"]))
            self.save_results(qrels, run, texts, dataset, file_path)
        if dataset == "trivia_qa":
            self.tenant_id = "benchmark_trivia_qa"
            self.index_name = search.index_name(self.tenant_id)
            qrels, texts = self.trivia_qa_index(file_path, "benchmark_trivia_qa")
            run = self._get_retrieval(qrels)
            print(dataset, evaluate(Qrels(qrels), Run(run), ["ndcg@10", "map@5", "mrr@10"]))
            self.save_results(qrels, run, texts, dataset, file_path)
        if dataset == "miracl":
            for lang in ['ar', 'bn', 'de', 'en', 'es', 'fa', 'fi', 'fr', 'hi', 'id', 'ja', 'ko', 'ru', 'sw', 'te', 'th',
                         'yo', 'zh']:
                if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang)):
                    print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang) + ' not found!')
                    continue
                if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels')):
                    print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels') + 'not found!')
                    continue
                if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics')):
                    print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics') + 'not found!')
                    continue
                if not os.path.isdir(os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang)):
                    print('Directory: ' + os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang) + ' not found!')
                    continue
                self.tenant_id = "benchmark_miracl_" + lang
                self.index_name = search.index_name(self.tenant_id)
                self.initialized_index = False
                qrels, texts = self.miracl_index(os.path.join(file_path, 'miracl-v1.0-' + lang),
                                                 os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang),
                                                 "benchmark_miracl_" + lang)
                run = self._get_retrieval(qrels)
                print(dataset, evaluate(Qrels(qrels), Run(run), ["ndcg@10", "map@5", "mrr@10"]))
                self.save_results(qrels, run, texts, dataset, file_path)


if __name__ == '__main__':
    print('*****************RAGFlow Benchmark*****************')
    parser = argparse.ArgumentParser(usage="benchmark.py <max_docs> <kb_id> <dataset> <dataset_path> [<miracl_corpus_path>])", description='RAGFlow Benchmark')
    parser.add_argument('max_docs', metavar='max_docs', type=int, help='max docs to evaluate')
    parser.add_argument('kb_id', metavar='kb_id', help='knowledgebase id')
    parser.add_argument('dataset', metavar='dataset', help='dataset name, shall be one of ms_marco_v1.1(https://huggingface.co/datasets/microsoft/ms_marco), trivia_qa(https://huggingface.co/datasets/mandarjoshi/trivia_qa>), miracl(https://huggingface.co/datasets/miracl/miracl')
    parser.add_argument('dataset_path', metavar='dataset_path', help='dataset path')
    parser.add_argument('miracl_corpus_path', metavar='miracl_corpus_path', nargs='?', default="", help='miracl corpus path. Only needed when dataset is miracl')

    args = parser.parse_args()
    max_docs = args.max_docs
    kb_id = args.kb_id
    ex = Benchmark(kb_id)

    dataset = args.dataset
    dataset_path = args.dataset_path

    if dataset == "ms_marco_v1.1" or dataset == "trivia_qa":
        ex(dataset, dataset_path)
    elif dataset == "miracl":
        if len(args) < 5:
            print('Please input the correct parameters!')
            exit(1)
        miracl_corpus_path = args[4]
        ex(dataset, dataset_path, miracl_corpus=args.miracl_corpus_path)
    else:
        print("Dataset: ", dataset, "not supported!")