File size: 6,979 Bytes
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6cd231
aeb6dbc
b691127
 
aeb6dbc
b691127
aeb6dbc
 
 
98a13e9
aeb6dbc
caf7eaa
aeb6dbc
6101699
 
 
 
 
 
 
 
 
 
 
 
 
e6cd231
da0bc38
 
aeb6dbc
 
6101699
aeb6dbc
 
6101699
 
 
 
 
 
 
 
 
 
 
 
 
4c135d3
 
 
 
6101699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da54ddf
 
6101699
da54ddf
6101699
 
 
 
 
 
 
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebde808
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import os
from datetime import date
from enum import IntEnum, Enum
import rag.utils.es_conn
import rag.utils.infinity_conn

import rag.utils
from rag.nlp import search
from graphrag import search as kg_search
from api.utils import get_base_config, decrypt_database_config
from api.constants import RAG_FLOW_SERVICE_NAME

LIGHTEN = int(os.environ.get('LIGHTEN', "0"))

LLM = None
LLM_FACTORY = None
LLM_BASE_URL = None
CHAT_MDL = ""
EMBEDDING_MDL = ""
RERANK_MDL = ""
ASR_MDL = ""
IMAGE2TEXT_MDL = ""
API_KEY = None
PARSERS = None
HOST_IP = None
HOST_PORT = None
SECRET_KEY = None

DATABASE_TYPE = os.getenv("DB_TYPE", 'mysql')
DATABASE = decrypt_database_config(name=DATABASE_TYPE)

# authentication
AUTHENTICATION_CONF = None

# client
CLIENT_AUTHENTICATION = None
HTTP_APP_KEY = None
GITHUB_OAUTH = None
FEISHU_OAUTH = None

DOC_ENGINE = None
docStoreConn = None

retrievaler = None
kg_retrievaler = None


def init_settings():
    global LLM, LLM_FACTORY, LLM_BASE_URL, LIGHTEN, DATABASE_TYPE, DATABASE
    LIGHTEN = int(os.environ.get('LIGHTEN', "0"))
    DATABASE_TYPE = os.getenv("DB_TYPE", 'mysql')
    DATABASE = decrypt_database_config(name=DATABASE_TYPE)
    LLM = get_base_config("user_default_llm", {})
    LLM_FACTORY = LLM.get("factory", "Tongyi-Qianwen")
    LLM_BASE_URL = LLM.get("base_url")

    global CHAT_MDL, EMBEDDING_MDL, RERANK_MDL, ASR_MDL, IMAGE2TEXT_MDL
    if not LIGHTEN:
        default_llm = {
            "Tongyi-Qianwen": {
                "chat_model": "qwen-plus",
                "embedding_model": "text-embedding-v2",
                "image2text_model": "qwen-vl-max",
                "asr_model": "paraformer-realtime-8k-v1",
            },
            "OpenAI": {
                "chat_model": "gpt-3.5-turbo",
                "embedding_model": "text-embedding-ada-002",
                "image2text_model": "gpt-4-vision-preview",
                "asr_model": "whisper-1",
            },
            "Azure-OpenAI": {
                "chat_model": "gpt-35-turbo",
                "embedding_model": "text-embedding-ada-002",
                "image2text_model": "gpt-4-vision-preview",
                "asr_model": "whisper-1",
            },
            "ZHIPU-AI": {
                "chat_model": "glm-3-turbo",
                "embedding_model": "embedding-2",
                "image2text_model": "glm-4v",
                "asr_model": "",
            },
            "Ollama": {
                "chat_model": "qwen-14B-chat",
                "embedding_model": "flag-embedding",
                "image2text_model": "",
                "asr_model": "",
            },
            "Moonshot": {
                "chat_model": "moonshot-v1-8k",
                "embedding_model": "",
                "image2text_model": "",
                "asr_model": "",
            },
            "DeepSeek": {
                "chat_model": "deepseek-chat",
                "embedding_model": "",
                "image2text_model": "",
                "asr_model": "",
            },
            "VolcEngine": {
                "chat_model": "",
                "embedding_model": "",
                "image2text_model": "",
                "asr_model": "",
            },
            "BAAI": {
                "chat_model": "",
                "embedding_model": "BAAI/bge-large-zh-v1.5",
                "image2text_model": "",
                "asr_model": "",
                "rerank_model": "BAAI/bge-reranker-v2-m3",
            }
        }

        if LLM_FACTORY:
            CHAT_MDL = default_llm[LLM_FACTORY]["chat_model"] + f"@{LLM_FACTORY}"
            ASR_MDL = default_llm[LLM_FACTORY]["asr_model"] + f"@{LLM_FACTORY}"
            IMAGE2TEXT_MDL = default_llm[LLM_FACTORY]["image2text_model"] + f"@{LLM_FACTORY}"
        EMBEDDING_MDL = default_llm["BAAI"]["embedding_model"] + "@BAAI"
        RERANK_MDL = default_llm["BAAI"]["rerank_model"] + "@BAAI"

    global API_KEY, PARSERS, HOST_IP, HOST_PORT, SECRET_KEY
    API_KEY = LLM.get("api_key", "")
    PARSERS = LLM.get(
        "parsers",
        "naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,knowledge_graph:Knowledge Graph,email:Email")

    HOST_IP = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("host", "127.0.0.1")
    HOST_PORT = get_base_config(RAG_FLOW_SERVICE_NAME, {}).get("http_port")

    SECRET_KEY = get_base_config(
        RAG_FLOW_SERVICE_NAME,
        {}).get("secret_key", str(date.today()))

    global AUTHENTICATION_CONF, CLIENT_AUTHENTICATION, HTTP_APP_KEY, GITHUB_OAUTH, FEISHU_OAUTH
    # authentication
    AUTHENTICATION_CONF = get_base_config("authentication", {})

    # client
    CLIENT_AUTHENTICATION = AUTHENTICATION_CONF.get(
        "client", {}).get(
        "switch", False)
    HTTP_APP_KEY = AUTHENTICATION_CONF.get("client", {}).get("http_app_key")
    GITHUB_OAUTH = get_base_config("oauth", {}).get("github")
    FEISHU_OAUTH = get_base_config("oauth", {}).get("feishu")

    global DOC_ENGINE, docStoreConn, retrievaler, kg_retrievaler
    DOC_ENGINE = os.environ.get('DOC_ENGINE', "elasticsearch")
    lower_case_doc_engine = DOC_ENGINE.lower()
    if lower_case_doc_engine == "elasticsearch":
        docStoreConn = rag.utils.es_conn.ESConnection()
    elif lower_case_doc_engine == "infinity":
        docStoreConn = rag.utils.infinity_conn.InfinityConnection()
    else:
        raise Exception(f"Not supported doc engine: {DOC_ENGINE}")

    retrievaler = search.Dealer(docStoreConn)
    kg_retrievaler = kg_search.KGSearch(docStoreConn)


class CustomEnum(Enum):
    @classmethod
    def valid(cls, value):
        try:
            cls(value)
            return True
        except BaseException:
            return False

    @classmethod
    def values(cls):
        return [member.value for member in cls.__members__.values()]

    @classmethod
    def names(cls):
        return [member.name for member in cls.__members__.values()]


class RetCode(IntEnum, CustomEnum):
    SUCCESS = 0
    NOT_EFFECTIVE = 10
    EXCEPTION_ERROR = 100
    ARGUMENT_ERROR = 101
    DATA_ERROR = 102
    OPERATING_ERROR = 103
    CONNECTION_ERROR = 105
    RUNNING = 106
    PERMISSION_ERROR = 108
    AUTHENTICATION_ERROR = 109
    UNAUTHORIZED = 401
    SERVER_ERROR = 500
    FORBIDDEN = 403
    NOT_FOUND = 404