File size: 26,371 Bytes
d607735 e9c1552 d607735 811d178 d607735 811d178 d607735 2e482fd d607735 e9c1552 811d178 d607735 811d178 d607735 811d178 d607735 811d178 d607735 811d178 d607735 e9c1552 d607735 811d178 d607735 811d178 d607735 811d178 d607735 811d178 d607735 e9c1552 d607735 e9c1552 d607735 e9c1552 d607735 e9c1552 d607735 e9c1552 d607735 e9c1552 d607735 2e482fd d607735 e9c1552 d607735 e9c1552 811d178 e9c1552 2e482fd e9c1552 2e482fd d607735 e9c1552 d607735 82f39fc 40a1db3 d607735 2e482fd 811d178 d607735 e9c1552 d607735 811d178 d607735 e9c1552 d607735 811d178 d607735 e9c1552 d607735 811d178 d607735 811d178 d607735 811d178 d607735 811d178 d607735 811d178 d607735 811d178 d607735 811d178 d607735 811d178 d607735 e9c1552 82f39fc 811d178 d607735 e9c1552 811d178 e9c1552 811d178 d607735 e9c1552 d607735 e9c1552 811d178 e9c1552 d607735 2e482fd d607735 e9c1552 d607735 e9c1552 d607735 e9c1552 d607735 811d178 d607735 811d178 d607735 811d178 d607735 811d178 d607735 811d178 d607735 811d178 d607735 811d178 d607735 811d178 d607735 811d178 d607735 811d178 d607735 811d178 d607735 811d178 d607735 811d178 d607735 811d178 d607735 811d178 d607735 811d178 d607735 40a1db3 d607735 40a1db3 d607735 e9c1552 d607735 40a1db3 d607735 811d178 40a1db3 d607735 e9c1552 d607735 e9c1552 d607735 e9c1552 d607735 e9c1552 d607735 e9c1552 d607735 40a1db3 d607735 e9c1552 d607735 e9c1552 d607735 e9c1552 d607735 e9c1552 d607735 40a1db3 d607735 e9c1552 d607735 40a1db3 d607735 e9c1552 d607735 e9c1552 d607735 e9c1552 d607735 40a1db3 d607735 e9c1552 d607735 811d178 d607735 40a1db3 e9c1552 40a1db3 e9c1552 40a1db3 e9c1552 d607735 e9c1552 d607735 e9c1552 40a1db3 d607735 40a1db3 d607735 40a1db3 811d178 d607735 e9c1552 d607735 e9c1552 d607735 e9c1552 d607735 e9c1552 d607735 e9c1552 d607735 e9c1552 d607735 e9c1552 d607735 e9c1552 d607735 40a1db3 d607735 e9c1552 d607735 40a1db3 d607735 e9c1552 d607735 e9c1552 d607735 e9c1552 d607735 cd7d2b9 d607735 cd7d2b9 d607735 811d178 d607735 cd7d2b9 d607735 cd7d2b9 d607735 811d178 cd7d2b9 d607735 cd7d2b9 d607735 cd7d2b9 d607735 cd7d2b9 d607735 811d178 cd7d2b9 d607735 cd7d2b9 d607735 811d178 d607735 811d178 d607735 811d178 cd7d2b9 d607735 cd7d2b9 d607735 cd7d2b9 d607735 cd7d2b9 811d178 d607735 811d178 d607735 811d178 cd7d2b9 d607735 cd7d2b9 d607735 811d178 d607735 cd7d2b9 d607735 811d178 cd7d2b9 811d178 cd7d2b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 |
# DRAFT Python API Reference
**THE API REFERENCES BELOW ARE STILL UNDER DEVELOPMENT.**
:::tip NOTE
Knowledgebase APIs
:::
## Create knowledge base
```python
RAGFlow.create_dataset(
name: str,
avatar: str = "",
description: str = "",
language: str = "English",
permission: str = "me",
document_count: int = 0,
chunk_count: int = 0,
parse_method: str = "naive",
parser_config: DataSet.ParserConfig = None
) -> DataSet
```
Creates a knowledge base (dataset).
### Parameters
#### name: `str`, *Required*
The unique name of the dataset to create. It must adhere to the following requirements:
- Permitted characters include:
- English letters (a-z, A-Z)
- Digits (0-9)
- "_" (underscore)
- Must begin with an English letter or underscore.
- Maximum 65,535 characters.
- Case-insensitive.
#### avatar: `str`
Base64 encoding of the avatar. Defaults to `""`
#### description
#### tenant_id: `str`
The id of the tenant associated with the created dataset is used to identify different users. Defaults to `None`.
- If creating a dataset, tenant_id must not be provided.
- If updating a dataset, tenant_id can't be changed.
#### description: `str`
The description of the created dataset. Defaults to `""`.
#### language: `str`
The language setting of the created dataset. Defaults to `"English"`. ????????????
#### permission
Specify who can operate on the dataset. Defaults to `"me"`.
#### document_count: `int`
The number of documents associated with the dataset. Defaults to `0`.
#### chunk_count: `int`
The number of data chunks generated or processed by the created dataset. Defaults to `0`.
#### parse_method, `str`
The method used by the dataset to parse and process data. Defaults to `"naive"`.
#### parser_config
The parser configuration of the dataset. A `ParserConfig` object contains the following attributes:
- `chunk_token_count`: Defaults to `128`.
- `layout_recognize`: Defaults to `True`.
- `delimiter`: Defaults to `'\n!?。;!?'`.
- `task_page_size`: Defaults to `12`.
### Returns
- Success: A `dataset` object.
- Failure: `Exception`
### Examples
```python
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
ds = rag_object.create_dataset(name="kb_1")
```
---
## Delete knowledge bases
```python
RAGFlow.delete_datasets(ids: list[str] = None)
```
Deletes knowledge bases by name or ID.
### Parameters
#### ids
The IDs of the knowledge bases to delete.
### Returns
- Success: No value is returned.
- Failure: `Exception`
### Examples
```python
rag.delete_datasets(ids=["id_1","id_2"])
```
---
## List knowledge bases
```python
RAGFlow.list_datasets(
page: int = 1,
page_size: int = 1024,
orderby: str = "create_time",
desc: bool = True,
id: str = None,
name: str = None
) -> List[DataSet]
```
Retrieves a list of knowledge bases.
### Parameters
#### page: `int`
The current page number to retrieve from the paginated results. Defaults to `1`.
#### page_size: `int`
The number of records on each page. Defaults to `1024`.
#### order_by: `str`
The field by which the records should be sorted. This specifies the attribute or column used to order the results. Defaults to `"create_time"`.
#### desc: `bool`
Whether the sorting should be in descending order. Defaults to `True`.
#### id: `str`
The id of the dataset to be got. Defaults to `None`.
#### name: `str`
The name of the dataset to be got. Defaults to `None`.
### Returns
- Success: A list of `DataSet` objects representing the retrieved knowledge bases.
- Failure: `Exception`.
### Examples
#### List all knowledge bases
```python
for ds in rag_object.list_datasets():
print(ds)
```
#### Retrieve a knowledge base by ID
```python
dataset = rag_object.list_datasets(id = "id_1")
print(dataset[0])
```
---
## Update knowledge base
```python
DataSet.update(update_message: dict)
```
Updates the current knowledge base.
### Parameters
#### update_message: `dict[str, str|int]`, *Required*
- `"name"`: `str` The name of the knowledge base to update.
- `"tenant_id"`: `str` The `"tenant_id` you get after calling `create_dataset()`.
- `"embedding_model"`: `str` The embedding model for generating vector embeddings.
- Ensure that `"chunk_count"` is `0` before updating `"embedding_model"`.
- `"parser_method"`: `str`
- `"naive"`: General
- `"manual`: Manual
- `"qa"`: Q&A
- `"table"`: Table
- `"paper"`: Paper
- `"book"`: Book
- `"laws"`: Laws
- `"presentation"`: Presentation
- `"picture"`: Picture
- `"one"`:One
- `"knowledge_graph"`: Knowledge Graph
- `"email"`: Email
### Returns
- Success: No value is returned.
- Failure: `Exception`
### Examples
```python
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
ds = rag.list_datasets(name="kb_1")
ds.update({"embedding_model":"BAAI/bge-zh-v1.5", "parse_method":"manual"})
```
---
:::tip API GROUPING
File management inside knowledge base
:::
## Upload document
```python
RAGFLOW.upload_document(ds:DataSet, name:str, blob:bytes)-> bool
```
### Parameters
#### name
#### blob
### Returns
### Examples
---
## Retrieve document
```python
RAGFlow.get_document(id:str=None,name:str=None) -> Document
```
### Parameters
#### id: `str`, *Required*
ID of the document to retrieve.
#### name: `str`
Name or title of the document.
### Returns
A document object containing the following attributes:
#### id: `str`
Id of the retrieved document. Defaults to `""`.
#### thumbnail: `str`
Thumbnail image of the retrieved document. Defaults to `""`.
#### knowledgebase_id: `str`
Knowledge base ID related to the document. Defaults to `""`.
#### parser_method: `str`
Method used to parse the document. Defaults to `""`.
#### parser_config: `ParserConfig`
Configuration object for the parser. Defaults to `None`.
#### source_type: `str`
Source type of the document. Defaults to `""`.
#### type: `str`
Type or category of the document. Defaults to `""`.
#### created_by: `str`
Creator of the document. Defaults to `""`.
#### name: `str`
string
''
Name or title of the document. Defaults to `""`.
#### size: `int`
Size of the document in bytes or some other unit. Defaults to `0`.
#### token_count: `int`
Number of tokens in the document. Defaults to `""`.
#### chunk_count: `int`
Number of chunks the document is split into. Defaults to `0`.
#### progress: `float`
Current processing progress as a percentage. Defaults to `0.0`.
#### progress_msg: `str`
Message indicating current progress status. Defaults to `""`.
#### process_begin_at: `datetime`
Start time of the document processing. Defaults to `None`.
#### process_duation: `float`
Duration of the processing in seconds or minutes. Defaults to `0.0`.
### Examples
```python
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
doc = rag.get_document(id="wdfxb5t547d",name='testdocument.txt')
print(doc)
```
---
## Save document settings
```python
Document.save() -> bool
```
### Returns
bool
### Examples
```python
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
doc = rag.get_document(id="wdfxb5t547d")
doc.parser_method= "manual"
doc.save()
```
---
## Download document
```python
Document.download() -> bytes
```
### Returns
bytes of the document.
### Examples
```python
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
doc = rag.get_document(id="wdfxb5t547d")
open("~/ragflow.txt", "w+").write(doc.download())
print(doc)
```
---
## List documents
```python
Dataset.list_docs(keywords: str=None, offset: int=0, limit:int = -1) -> List[Document]
```
### Parameters
#### keywords: `str`
List documents whose name has the given keywords. Defaults to `None`.
#### offset: `int`
The beginning number of records for paging. Defaults to `0`.
#### limit: `int`
Records number to return, -1 means all of them. Records number to return, -1 means all of them.
### Returns
List[Document]
### Examples
```python
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
ds = rag.create_dataset(name="kb_1")
filename1 = "~/ragflow.txt"
rag.create_document(ds, name=filename1 , blob=open(filename1 , "rb").read())
filename2 = "~/infinity.txt"
rag.create_document(ds, name=filename2 , blob=open(filename2 , "rb").read())
for d in ds.list_docs(keywords="rag", offset=0, limit=12):
print(d)
```
---
## Delete documents
```python
Document.delete() -> bool
```
### Returns
bool
description: delete success or not
### Examples
```python
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
ds = rag.create_dataset(name="kb_1")
filename1 = "~/ragflow.txt"
rag.create_document(ds, name=filename1 , blob=open(filename1 , "rb").read())
filename2 = "~/infinity.txt"
rag.create_document(ds, name=filename2 , blob=open(filename2 , "rb").read())
for d in ds.list_docs(keywords="rag", offset=0, limit=12):
d.delete()
```
---
## Parse document
```python
Document.async_parse() -> None
RAGFLOW.async_parse_documents() -> None
```
### Parameters
????????????????????????????????????????????????????
### Returns
????????????????????????????????????????????????????
### Examples
```python
#document parse and cancel
rag = RAGFlow(API_KEY, HOST_ADDRESS)
ds = rag.create_dataset(name="dataset_name")
name3 = 'ai.pdf'
path = 'test_data/ai.pdf'
rag.create_document(ds, name=name3, blob=open(path, "rb").read())
doc = rag.get_document(name="ai.pdf")
doc.async_parse()
print("Async parsing initiated")
```
---
## Cancel document parsing
```python
rag.async_cancel_parse_documents(ids)
RAGFLOW.async_cancel_parse_documents()-> None
```
### Parameters
#### ids, `list[]`
### Returns
?????????????????????????????????????????????????
### Examples
```python
#documents parse and cancel
rag = RAGFlow(API_KEY, HOST_ADDRESS)
ds = rag.create_dataset(name="God5")
documents = [
{'name': 'test1.txt', 'path': 'test_data/test1.txt'},
{'name': 'test2.txt', 'path': 'test_data/test2.txt'},
{'name': 'test3.txt', 'path': 'test_data/test3.txt'}
]
# Create documents in bulk
for doc_info in documents:
with open(doc_info['path'], "rb") as file:
created_doc = rag.create_document(ds, name=doc_info['name'], blob=file.read())
docs = [rag.get_document(name=doc_info['name']) for doc_info in documents]
ids = [doc.id for doc in docs]
rag.async_parse_documents(ids)
print("Async bulk parsing initiated")
for doc in docs:
for progress, msg in doc.join(interval=5, timeout=10):
print(f"{doc.name}: Progress: {progress}, Message: {msg}")
cancel_result = rag.async_cancel_parse_documents(ids)
print("Async bulk parsing cancelled")
```
---
## Join document
??????????????????
```python
Document.join(interval=15, timeout=3600) -> iteral[Tuple[float, str]]
```
### Parameters
#### interval: `int`
Time interval in seconds for progress report. Defaults to `15`.
#### timeout: `int`
Timeout in seconds. Defaults to `3600`.
### Returns
iteral[Tuple[float, str]]
## Add chunk
```python
Document.add_chunk(content:str) -> Chunk
```
### Parameters
#### content: `str`, *Required*
### Returns
chunk
### Examples
```python
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
doc = rag.get_document(id="wdfxb5t547d")
chunk = doc.add_chunk(content="xxxxxxx")
```
---
## Delete chunk
```python
Chunk.delete() -> bool
```
### Returns
bool
### Examples
```python
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
doc = rag.get_document(id="wdfxb5t547d")
chunk = doc.add_chunk(content="xxxxxxx")
chunk.delete()
```
---
## Save chunk contents
```python
Chunk.save() -> bool
```
### Returns
bool
### Examples
```python
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
doc = rag.get_document(id="wdfxb5t547d")
chunk = doc.add_chunk(content="xxxxxxx")
chunk.content = "sdfx"
chunk.save()
```
---
## Retrieval
```python
RAGFlow.retrieval(question:str, datasets:List[Dataset], document=List[Document]=None, offset:int=0, limit:int=6, similarity_threshold:float=0.1, vector_similarity_weight:float=0.3, top_k:int=1024) -> List[Chunk]
```
### Parameters
#### question: `str`, *Required*
The user query or query keywords. Defaults to `""`.
#### datasets: `List[Dataset]`, *Required*
The scope of datasets.
#### document: `List[Document]`
The scope of document. `None` means no limitation. Defaults to `None`.
#### offset: `int`
The beginning point of retrieved records. Defaults to `0`.
#### limit: `int`
The maximum number of records needed to return. Defaults to `6`.
#### Similarity_threshold: `float`
The minimum similarity score. Defaults to `0.2`.
#### similarity_threshold_weight: `float`
The weight of vector cosine similarity, 1 - x is the term similarity weight. Defaults to `0.3`.
#### top_k: `int`
Number of records engaged in vector cosine computaton. Defaults to `1024`.
### Returns
List[Chunk]
### Examples
```python
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
ds = rag.get_dataset(name="ragflow")
name = 'ragflow_test.txt'
path = 'test_data/ragflow_test.txt'
rag.create_document(ds, name=name, blob=open(path, "rb").read())
doc = rag.get_document(name=name)
doc.async_parse()
# Wait for parsing to complete
for progress, msg in doc.join(interval=5, timeout=30):
print(progress, msg)
for c in rag.retrieval(question="What's ragflow?",
datasets=[ds], documents=[doc],
offset=0, limit=6, similarity_threshold=0.1,
vector_similarity_weight=0.3,
top_k=1024
):
print(c)
```
---
:::tip API GROUPING
Chat APIs
:::
## Create chat
Creates a chat assistant.
```python
RAGFlow.create_chat(
name: str = "assistant",
avatar: str = "path",
knowledgebases: List[DataSet] = ["kb1"],
llm: Chat.LLM = None,
prompt: Chat.Prompt = None
) -> Chat
```
### Returns
- Success: A `Chat` object representing the chat assistant.
- Failure: `Exception`
#### name: `str`
The name of the chat assistant. Defaults to `"assistant"`.
#### avatar: `str`
Base64 encoding of the avatar. Defaults to `""`.
#### knowledgebases: `list[str]`
The associated knowledge bases. Defaults to `["kb1"]`.
#### llm: `LLM`
The llm of the created chat. Defaults to `None`. When the value is `None`, a dictionary with the following values will be generated as the default.
- **model_name**, `str`
The chat model name. If it is `None`, the user's default chat model will be returned.
- **temperature**, `float`
This parameter controls the randomness of predictions by the model. A lower temperature makes the model more confident in its responses, while a higher temperature makes it more creative and diverse. Defaults to `0.1`.
- **top_p**, `float`
Also known as “nucleus sampling”, this parameter sets a threshold to select a smaller set of words to sample from. It focuses on the most likely words, cutting off the less probable ones. Defaults to `0.3`
- **presence_penalty**, `float`
This discourages the model from repeating the same information by penalizing words that have already appeared in the conversation. Defaults to `0.2`.
- **frequency penalty**, `float`
Similar to the presence penalty, this reduces the model’s tendency to repeat the same words frequently. Defaults to `0.7`.
- **max_token**, `int`
This sets the maximum length of the model’s output, measured in the number of tokens (words or pieces of words). Defaults to `512`.
#### Prompt: `str`
Instructions for LLM's responses, including character design, answer length, and language. Defaults to:
```
You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence "The answer you are looking for is not found in the knowledge base!" Answers need to consider chat history.
Here is the knowledge base:
{knowledge}
The above is the knowledge base.
```
### Examples
```python
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
knowledge_base = rag.list_datasets(name="kb_1")
assistant = rag.create_chat("Miss R", knowledgebases=knowledge_base)
```
---
## Update chat
Updates the current chat assistant.
```python
Chat.update(update_message: dict)
```
### Parameters
#### update_message: `dict[str, Any]`, *Required*
- `"name"`: `str` The name of the chat assistant to update.
- `"avatar"`: `str` Base64 encoding of the avatar. Defaults to `""`
- `"knowledgebases"`: `list[str]` Knowledge bases to update.
- `"llm"`: `dict` llm settings
- `"model_name"`, `str` The chat model name.
- `"temperature"`, `float` This parameter controls the randomness of predictions by the model.
- `"top_p"`, `float` Also known as “nucleus sampling”, this parameter sets a threshold to select a smaller set of words to sample from.
- `"presence_penalty"`, `float` This discourages the model from repeating the same information by penalizing words that have already appeared in the conversation.
- `"frequency penalty"`, `float` Similar to the presence penalty, this reduces the model’s tendency to repeat the same words frequently.
- `"max_token"`, `int` This sets the maximum length of the model’s output, measured in the number of tokens (words or pieces of words).
- `"prompt"` : Instructions for LLM's responses, including character design, answer length, and language.
### Returns
- Success: No value is returned.
- Failure: `Exception`
### Examples
```python
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
knowledge_base = rag.list_datasets(name="kb_1")
assistant = rag.create_chat("Miss R", knowledgebases=knowledge_base)
assistant.update({"llm": {"temperature":0.8}})
```
---
## Delete chats
Deletes specified chat assistants.
```python
RAGFlow.delete_chats(ids: List[str] = None)
```
### Parameters
#### ids
IDs of the chat assistants to delete.
### Returns
- Success: No value is returned.
- Failure: `Exception`
### Examples
```python
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
rag.delete_chats(ids=["id_1","id_2"])
```
---
## List chats
```python
RAGFlow.list_chats(
page: int = 1,
page_size: int = 1024,
orderby: str = "create_time",
desc: bool = True,
id: str = None,
name: str = None
) -> List[Chat]
```
### Parameters
#### page
The current page number to retrieve from the paginated results. Defaults to `1`.
#### page_size
The number of records on each page. Defaults to `1024`.
#### order_by
The attribute by which the results are sorted. Defaults to `"create_time"`.
#### desc
Indicates whether to sort the results in descending order. Defaults to `True`.
#### id: `string`
The ID of the chat to be retrieved. Defaults to `None`.
#### name: `string`
The name of the chat to be retrieved. Defaults to `None`.
### Returns
- Success: A list of `Chat` objects representing the retrieved knowledge bases.
- Failure: `Exception`.
### Examples
```python
from ragflow import RAGFlow
rag = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
for assistant in rag.list_chats():
print(assistant)
```
---
:::tip API GROUPING
Chat-session APIs
:::
## Create session
```python
Chat.create_session(name: str = "New session") -> Session
```
### Returns
A `session` object.
#### id: `str`
The id of the created session is used to identify different sessions.
- id can not be provided in creating
#### name: `str`
The name of the created session. Defaults to `"New session"`.
#### messages: `List[Message]`
The messages of the created session.
- messages cannot be provided.
Defaults:
??????????????????????????????????????????????????????????????????????????????????????????????
```
[{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}]
```
#### chat_id: `str`
The id of associated chat
- `chat_id` can't be changed
### Examples
```python
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
assi = rag.list_chats(name="Miss R")
assi = assi[0]
sess = assi.create_session()
```
## Update session
```python
Session.update(update_message:dict)
```
### Returns
no return
### Examples
```python
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
assi = rag.list_chats(name="Miss R")
assi = assi[0]
sess = assi.create_session("new_session")
sess.update({"name": "Updated session"...})
```
---
## Chat
```python
Session.ask(question: str, stream: bool = False) -> Optional[Message, iter[Message]]
```
### Parameters
#### question: `str`, *Required*
The question to start an AI chat. Defaults to `None`. ???????????????????
#### stream: `bool`
The approach of streaming text generation. When stream is True, it outputs results in a streaming fashion; otherwise, it outputs the complete result after the model has finished generating.
### Returns
[Message, iter[Message]]
#### id: `str`
The id of the message. `id` is automatically generated. Defaults to `None`. ???????????????????
#### content: `str`
The content of the message. Defaults to `"Hi! I am your assistant, can I help you?"`.
#### reference: `List[Chunk]`
The auto-generated reference of the message. Each `chunk` object includes the following attributes:
- **id**: `str`
The id of the chunk. ?????????????????
- **content**: `str`
The content of the chunk. Defaults to `None`. ?????????????????????
- **document_id**: `str`
The ID of the document being referenced. Defaults to `""`.
- **document_name**: `str`
The name of the referenced document being referenced. Defaults to `""`.
- **knowledgebase_id**: `str`
The id of the knowledge base to which the relevant document belongs. Defaults to `""`.
- **image_id**: `str`
The id of the image related to the chunk. Defaults to `""`.
- **similarity**: `float`
A general similarity score, usually a composite score derived from various similarity measures . This score represents the degree of similarity between two objects. The value ranges between 0 and 1, where a value closer to 1 indicates higher similarity. Defaults to `None`. ????????????????????????????????????
- **vector_similarity**: `float`
A similarity score based on vector representations. This score is obtained by converting texts, words, or objects into vectors and then calculating the cosine similarity or other distance measures between these vectors to determine the similarity in vector space. A higher value indicates greater similarity in the vector space. Defaults to `None`. ?????????????????????????????????
- **term_similarity**: `float`
The similarity score based on terms or keywords. This score is calculated by comparing the similarity of key terms between texts or datasets, typically measuring how similar two words or phrases are in meaning or context. A higher value indicates a stronger similarity between terms. Defaults to `None`. ???????????????????
- **position**: `List[string]`
Indicates the position or index of keywords or specific terms within the text. An array is typically used to mark the location of keywords or specific elements, facilitating precise operations or analysis of the text. Defaults to `None`. ??????????????
### Examples
```python
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
assi = rag.list_chats(name="Miss R")
assi = assi[0]
sess = assi.create_session()
print("\n==================== Miss R =====================\n")
print(assi.get_prologue())
while True:
question = input("\n==================== User =====================\n> ")
print("\n==================== Miss R =====================\n")
cont = ""
for ans in sess.ask(question, stream=True):
print(ans.content[len(cont):], end='', flush=True)
cont = ans.content
```
---
## List sessions
```python
Chat.list_sessions(
page: int = 1,
page_size: int = 1024,
orderby: str = "create_time",
desc: bool = True,
id: str = None,
name: str = None
) -> List[Session]
```
### Returns
List[Session]
description: the List contains information about multiple assistant object, with each dictionary containing information about one assistant.
### Examples
```python
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
assi = rag.list_chats(name="Miss R")
assi = assi[0]
for sess in assi.list_sessions():
print(sess)
```
### Parameters
#### page: `int`
The current page number to retrieve from the paginated data. This parameter determines which set of records will be fetched.
- `1`
#### page_size: `int`
The number of records to retrieve per page. This controls how many records will be included in each page.
- `1024`
#### orderby: `string`
The field by which the records should be sorted. This specifies the attribute or column used to order the results.
- `"create_time"`
#### desc: `bool`
A boolean flag indicating whether the sorting should be in descending order.
- `True`
#### id: `string`
The ID of the chat to be retrieved.
- `None`
#### name: `string`
The name of the chat to be retrieved.
- `None`
---
## Delete session
```python
Chat.delete_sessions(ids:List[str] = None)
```
### Returns
no return
### Examples
```python
from ragflow import RAGFlow
rag = RAGFlow(api_key="xxxxxx", base_url="http://xxx.xx.xx.xxx:9380")
assi = rag.list_chats(name="Miss R")
assi = assi[0]
assi.delete_sessions(ids=["id_1","id_2"])
```
### Parameters
#### ids: `List[string]`
IDs of the sessions to be deleted.
- `None`
|