File size: 54,894 Bytes
487f4f4
e9c1552
 
 
487f4f4
 
 
 
 
811d178
487f4f4
 
 
 
2e482fd
487f4f4
 
 
 
2e482fd
 
 
487f4f4
2e482fd
 
487f4f4
2e482fd
487f4f4
2e482fd
487f4f4
2e482fd
487f4f4
 
 
2e482fd
811d178
 
2e482fd
811d178
 
487f4f4
2e482fd
 
 
 
 
 
 
 
487f4f4
 
 
 
 
2e482fd
811d178
 
2e482fd
 
487f4f4
2e482fd
811d178
2e482fd
 
 
 
487f4f4
2e482fd
811d178
 
2e482fd
 
 
 
 
 
 
487f4f4
811d178
 
 
2e482fd
 
 
 
487f4f4
2e482fd
811d178
2e482fd
 
 
811d178
2e482fd
 
 
811d178
2e482fd
 
 
487f4f4
 
 
811d178
487f4f4
2e482fd
487f4f4
2e482fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487f4f4
 
 
 
 
 
811d178
 
487f4f4
2e482fd
487f4f4
2e482fd
 
487f4f4
 
 
40a1db3
487f4f4
 
 
811d178
487f4f4
 
 
 
2e482fd
487f4f4
 
 
2e482fd
 
487f4f4
 
 
 
2e482fd
811d178
487f4f4
2e482fd
 
 
 
40a1db3
2e482fd
487f4f4
 
 
 
811d178
 
487f4f4
 
 
 
811d178
487f4f4
2e482fd
487f4f4
 
 
 
 
 
 
 
 
811d178
487f4f4
2e482fd
487f4f4
2e482fd
 
487f4f4
 
 
 
 
 
 
811d178
487f4f4
 
 
 
2e482fd
487f4f4
 
 
2e482fd
487f4f4
 
 
 
2e482fd
811d178
 
 
 
 
 
 
 
487f4f4
2e482fd
 
 
 
 
 
 
 
 
811d178
487f4f4
 
 
 
811d178
487f4f4
 
 
 
811d178
487f4f4
2e482fd
487f4f4
 
 
 
 
 
 
 
 
811d178
487f4f4
2e482fd
487f4f4
2e482fd
 
487f4f4
 
 
 
 
2e482fd
487f4f4
 
 
 
 
 
2e482fd
487f4f4
 
 
 
 
 
2e482fd
 
 
 
 
487f4f4
2e482fd
 
487f4f4
 
 
 
 
 
 
 
 
 
 
 
 
 
40a1db3
2e482fd
 
 
487f4f4
 
 
811d178
487f4f4
2e482fd
487f4f4
 
 
 
2e482fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487f4f4
2e482fd
487f4f4
 
 
 
811d178
487f4f4
2e482fd
487f4f4
2e482fd
 
487f4f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
811d178
487f4f4
 
 
811d178
 
487f4f4
 
 
 
 
 
 
 
 
 
 
811d178
487f4f4
811d178
487f4f4
 
 
 
 
 
 
 
 
811d178
487f4f4
811d178
487f4f4
811d178
 
487f4f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
811d178
487f4f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
811d178
487f4f4
811d178
 
487f4f4
 
 
 
 
 
811d178
487f4f4
811d178
487f4f4
811d178
 
487f4f4
 
 
 
 
 
811d178
487f4f4
 
 
 
 
 
 
 
 
 
 
 
 
811d178
487f4f4
811d178
 
487f4f4
 
 
 
 
 
811d178
 
487f4f4
 
811d178
 
487f4f4
 
 
 
811d178
 
487f4f4
 
 
811d178
487f4f4
811d178
487f4f4
 
 
 
 
 
811d178
 
 
 
 
 
 
487f4f4
 
 
 
 
 
 
 
 
 
 
 
811d178
487f4f4
 
 
 
 
811d178
 
487f4f4
 
811d178
 
487f4f4
 
 
 
 
 
 
811d178
487f4f4
811d178
487f4f4
811d178
 
487f4f4
 
 
 
 
 
 
 
 
 
 
 
811d178
487f4f4
 
 
 
 
 
811d178
487f4f4
811d178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487f4f4
 
 
 
811d178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487f4f4
 
 
811d178
487f4f4
811d178
487f4f4
 
 
 
 
811d178
487f4f4
811d178
487f4f4
811d178
 
487f4f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
811d178
487f4f4
 
 
 
 
 
 
811d178
487f4f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
811d178
487f4f4
 
 
 
 
 
 
811d178
487f4f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
811d178
487f4f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
811d178
487f4f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40a1db3
487f4f4
 
 
40a1db3
 
 
 
 
 
 
 
487f4f4
 
 
 
 
 
 
 
 
40a1db3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487f4f4
 
 
40a1db3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487f4f4
 
40a1db3
487f4f4
 
 
 
 
 
40a1db3
487f4f4
 
 
40a1db3
 
487f4f4
40a1db3
487f4f4
40a1db3
487f4f4
 
40a1db3
487f4f4
 
40a1db3
 
 
487f4f4
40a1db3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487f4f4
40a1db3
487f4f4
40a1db3
487f4f4
 
 
40a1db3
 
487f4f4
 
 
40a1db3
 
487f4f4
40a1db3
 
 
 
487f4f4
40a1db3
 
 
 
487f4f4
40a1db3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487f4f4
40a1db3
487f4f4
40a1db3
487f4f4
40a1db3
487f4f4
 
 
 
40a1db3
487f4f4
 
 
 
 
40a1db3
487f4f4
40a1db3
487f4f4
40a1db3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487f4f4
 
 
 
 
 
 
 
 
 
cd7d2b9
487f4f4
 
cd7d2b9
 
 
487f4f4
 
cd7d2b9
487f4f4
 
 
 
cd7d2b9
487f4f4
 
cd7d2b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487f4f4
 
 
cd7d2b9
487f4f4
cd7d2b9
487f4f4
 
 
 
cd7d2b9
487f4f4
 
 
 
cd7d2b9
487f4f4
cd7d2b9
487f4f4
cd7d2b9
 
 
 
 
 
 
 
 
 
 
 
 
 
487f4f4
cd7d2b9
 
 
487f4f4
cd7d2b9
 
 
487f4f4
cd7d2b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487f4f4
 
 
 
cd7d2b9
487f4f4
 
 
cd7d2b9
 
487f4f4
 
cd7d2b9
 
487f4f4
cd7d2b9
 
 
 
 
 
 
487f4f4
cd7d2b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487f4f4
 
 
 
 
 
 
 
 
cd7d2b9
487f4f4
 
 
cd7d2b9
 
487f4f4
 
cd7d2b9
487f4f4
cd7d2b9
487f4f4
cd7d2b9
 
487f4f4
 
 
cd7d2b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
487f4f4
 
 
 
 
 
 
 
 
cd7d2b9
487f4f4
 
 
cd7d2b9
 
 
 
487f4f4
 
cd7d2b9
487f4f4
cd7d2b9
487f4f4
cd7d2b9
487f4f4
cd7d2b9
 
487f4f4
cd7d2b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853

# DRAFT! HTTP API Reference

**THE API REFERENCES BELOW ARE STILL UNDER DEVELOPMENT.**

## Create dataset

**POST** `/api/v1/dataset`

Creates a dataset.

### Request

- Method: POST
- URL: `http://{address}/api/v1/dataset`
- Headers:
  - `content-Type: application/json`
  - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
- Body:
  - `"id"`: `string`
  - `"name"`: `string`
  - `"avatar"`: `string`
  - `"tenant_id"`: `string`
  - `"description"`: `string`
  - `"language"`: `string`
  - `"embedding_model"`: `string`
  - `"permission"`: `string`
  - `"document_count"`: `integer`
  - `"chunk_count"`: `integer`
  - `"parse_method"`: `string`
  - `"parser_config"`: `Dataset.ParserConfig`

#### Request example

```bash
# "id": id must not be provided.
# "name": name is required and can't be duplicated.
# "tenant_id": tenant_id must not be provided.
# "embedding_model": embedding_model must not be provided.
# "navie" means general.
curl --request POST \
  --url http://{address}/api/v1/dataset \
  --header 'Content-Type: application/json' \
  --header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' \
  --data '{
  "name": "test",
  "chunk_count": 0,
  "document_count": 0,
  "parse_method": "naive"
}'
```

#### Request parameters

- `"id"`: (*Body parameter*)  
    The ID of the created dataset used to uniquely identify different datasets.  
    - If creating a dataset, `id` must not be provided.

- `"name"`: (*Body parameter*)  
    The name of the dataset, which must adhere to the following requirements:  
    - Required when creating a dataset and must be unique.
    - If updating a dataset, `name` must still be unique.

- `"avatar"`: (*Body parameter*)  
    Base64 encoding of the avatar.

- `"tenant_id"`: (*Body parameter*)  
    The ID of the tenant associated with the dataset, used to link it with specific users.  
    - If creating a dataset, `tenant_id` must not be provided.
    - If updating a dataset, `tenant_id` cannot be changed.

- `"description"`: (*Body parameter*)  
    The description of the dataset.

- `"language"`: (*Body parameter*)  
    The language setting for the dataset.

- `"embedding_model"`: (*Body parameter*)  
    Embedding model used in the dataset to generate vector embeddings.  
    - If creating a dataset, `embedding_model` must not be provided.
    - If updating a dataset, `embedding_model` cannot be changed.

- `"permission"`: (*Body parameter*)  
    Specifies who can manipulate the dataset.

- `"document_count"`: (*Body parameter*)  
    Document count of the dataset.  
    - If updating a dataset, `document_count` cannot be changed.

- `"chunk_count"`: (*Body parameter*)  
    Chunk count of the dataset.  
    - If updating a dataset, `chunk_count` cannot be changed.

- `"parse_method"`: (*Body parameter*)  
    Parsing method of the dataset.  
    - If updating `parse_method`, `chunk_count` must be greater than 0.

- `"parser_config"`: (*Body parameter*)  
    The configuration settings for the dataset parser.

### Response

The successful response includes a JSON object like the following:

```json
{
    "code": 0,
    "data": {
        "avatar": null,
        "chunk_count": 0,
        "create_date": "Thu, 10 Oct 2024 05:57:37 GMT",
        "create_time": 1728539857641,
        "created_by": "69736c5e723611efb51b0242ac120007",
        "description": null,
        "document_count": 0,
        "embedding_model": "BAAI/bge-large-zh-v1.5",
        "id": "8d73076886cc11ef8c270242ac120006",
        "language": "English",
        "name": "test_1",
        "parse_method": "naive",
        "parser_config": {
            "pages": [
                [
                    1,
                    1000000
                ]
            ]
        },
        "permission": "me",
        "similarity_threshold": 0.2,
        "status": "1",
        "tenant_id": "69736c5e723611efb51b0242ac120007",
        "token_num": 0,
        "update_date": "Thu, 10 Oct 2024 05:57:37 GMT",
        "update_time": 1728539857641,
        "vector_similarity_weight": 0.3
    }
}
```

- `"error_code"`: `integer`  
  `0`: The operation succeeds.

  
The error response includes a JSON object like the following:

```json
{
    "code": 102,
    "message": "Duplicated knowledgebase name in creating dataset."
}
```

## Delete datasets

**DELETE** `/api/v1/dataset`

Deletes datasets by ids.

### Request

- Method: DELETE
- URL: `http://{address}/api/v1/dataset`
- Headers:
  - `content-Type: application/json`
  - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
  - Body:
    - `"ids"`: `List[string]`


#### Request example

```bash
# Either id or name must be provided, but not both.
curl --request DELETE \
  --url http://{address}/api/v1/dataset \
  --header 'Content-Type: application/json' \
  --header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' \
  --data '{
  "ids": ["test_1", "test_2"]
  }'
```

#### Request parameters

- `"ids"`: (*Body parameter*)
    Dataset IDs to delete.


### Response

The successful response includes a JSON object like the following:

```json
{
    "code": 0 
}
```

- `"error_code"`: `integer`  
  `0`: The operation succeeds.

  
The error response includes a JSON object like the following:

```json
{
    "code": 102,
    "message": "You don't own the dataset."
}
```

## Update dataset

**PUT** `/api/v1/dataset/{dataset_id}`

Updates a dataset by its id.

### Request

- Method: PUT
- URL: `http://{address}/api/v1/dataset/{dataset_id}`
- Headers:
  - `content-Type: application/json`
  - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
  - Body: (Refer to the "Create Dataset" for the complete structure of the request body.)


#### Request example

```bash
# "id":  id is required.
# "name": If you update name, it can't be duplicated.
# "tenant_id": If you update tenant_id, it can't be changed
# "embedding_model": If you update embedding_model, it can't be changed.
# "chunk_count": If you update chunk_count, it can't be changed.
# "document_count": If you update document_count, it can't be changed.
# "parse_method": If you update parse_method, chunk_count must be 0. 
# "navie" means general.
curl --request PUT \
  --url http://{address}/api/v1/dataset/{dataset_id} \
  --header 'Content-Type: application/json' \
  --header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' \
  --data '{
  "name": "test",
  "tenant_id": "4fb0cd625f9311efba4a0242ac120006",
  "embedding_model": "BAAI/bge-zh-v1.5",
  "chunk_count": 0,
  "document_count": 0,
  "parse_method": "navie"
}'
```

#### Request parameters
(Refer to the "Create Dataset" for the complete structure of the request parameters.)


### Response

The successful response includes a JSON object like the following:

```json
{
    "code": 0 
}
```

- `"error_code"`: `integer`  
  `0`: The operation succeeds.

  
The error response includes a JSON object like the following:

```json
{
    "code": 102,
    "message": "Can't change tenant_id."
}
```

## List datasets

**GET** `/api/v1/dataset?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&name={dataset_name}&id={dataset_id}`

List all datasets

### Request

- Method: GET
- URL: `http://{address}/api/v1/dataset?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&name={dataset_name}&id={dataset_id}`
- Headers:
  - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'


#### Request example

```bash
# If no page parameter is passed, the default is 1
# If no page_size parameter is passed, the default is 1024
# If no order_by parameter is passed, the default is "create_time"
# If no desc parameter is passed, the default is True
curl --request GET \
  --url http://{address}/api/v1/dataset?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&name={dataset_name}&id={dataset_id} \
  --header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
```

#### Request parameters

- `path`: (*Path parameter*)
    The current page number to retrieve from the paginated data. This parameter determines which set of records will be fetched.
- `path_size`: (*Path parameter*)
    The number of records to retrieve per page. This controls how many records will be included in each page. 
- `orderby`: (*Path parameter*)
    The field by which the records should be sorted. This specifies the attribute or column used to order the results.
- `desc`: (*Path parameter*)
    A boolean flag indicating whether the sorting should be in descending order.
- `name`: (*Path parameter*)
    Dataset name
- `"id"`: (*Path parameter*)  
    The ID of the dataset to be retrieved.
- `"name"`: (*Path parameter*)  
    The name of the dataset to be retrieved.

### Response

The successful response includes a JSON object like the following:

```json
{
    "code": 0,
    "data": [
        {
            "avatar": "",
            "chunk_count": 59,
            "create_date": "Sat, 14 Sep 2024 01:12:37 GMT",
            "create_time": 1726276357324,
            "created_by": "69736c5e723611efb51b0242ac120007",
            "description": null,
            "document_count": 1,
            "embedding_model": "BAAI/bge-large-zh-v1.5",
            "id": "6e211ee0723611efa10a0242ac120007",
            "language": "English",
            "name": "mysql",
            "parse_method": "knowledge_graph",
            "parser_config": {
                "chunk_token_num": 8192,
                "delimiter": "\\n!?;。;!?",
                "entity_types": [
                    "organization",
                    "person",
                    "location",
                    "event",
                    "time"
                ]
            },
            "permission": "me",
            "similarity_threshold": 0.2,
            "status": "1",
            "tenant_id": "69736c5e723611efb51b0242ac120007",
            "token_num": 12744,
            "update_date": "Thu, 10 Oct 2024 04:07:23 GMT",
            "update_time": 1728533243536,
            "vector_similarity_weight": 0.3
        }
    ]
}
```

  
The error response includes a JSON object like the following:

```json
{
    "code": 102,
    "message": "The dataset doesn't exist"
}
```

## Upload files to a dataset

**POST** `/api/v1/dataset/{dataset_id}/document`

Uploads files to a dataset. 

### Request

- Method: POST
- URL: `/api/v1/dataset/{dataset_id}/document`
- Headers:
  - 'Content-Type: multipart/form-data'
  - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
- Form:
  - 'file=@{FILE_PATH}'

#### Request example

```bash
curl --request POST \
     --url http://{address}/api/v1/dataset/{dataset_id}/document \
     --header 'Content-Type: multipart/form-data' \
     --header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' \     
     --form 'file=@./test.txt'
```

#### Request parameters

- `"dataset_id"`: (*Path parameter*)
    The dataset id
- `"file"`: (*Body parameter*)  
    The file to upload

### Response

The successful response includes a JSON object like the following:

```json
{
    "code": 0 
}
```

- `"error_code"`: `integer`  
  `0`: The operation succeeds.

  
The error response includes a JSON object like the following:

```json
{
    "code": 101,
    "message": "No file part!"
}
```

## Download a file from a dataset

**GET** `/api/v1/dataset/{dataset_id}/document/{document_id}`

Downloads files from a dataset. 

### Request

- Method: GET
- URL: `/api/v1/dataset/{dataset_id}/document/{document_id}`
- Headers:
  - `content-Type: application/json`
  - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
- Output:
  - '{FILE_NAME}'
#### Request example

```bash
curl --request GET \
     --url http://{address}/api/v1/dataset/{dataset_id}/document/{documents_id} \
     --header 'Content-Type: application/json' \
     --header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
     --output '{FILE_NAME}'
```

#### Request parameters

- `"dataset_id"`: (*PATH parameter*)
    The dataset id
- `"documents_id"`: (*PATH parameter*)  
    The document id of the file.

### Response

The successful response includes a JSON object like the following:

```text
test_2.
```

- `"error_code"`: `integer`  
  `0`: The operation succeeds.

  
The error response includes a JSON object like the following:

```json
{
    "code": 102,
    "message": "You do not own the dataset 7898da028a0511efbf750242ac1220005."
}
```


## List files of a dataset

**GET** `/api/v1/dataset/{dataset_id}/info?offset={offset}&limit={limit}&orderby={orderby}&desc={desc}&keywords={keywords}&id={document_id}`

List files to a dataset. 

### Request

- Method: GET
- URL: `/api/v1/dataset/{dataset_id}/info?keywords={keyword}&page={page}&page_size={limit}&orderby={orderby}&desc={desc}&name={name`
- Headers:
  - `content-Type: application/json`
  - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'

#### Request example

```bash
curl --request GET \
  --url http://{address}/api/v1/dataset/{dataset_id}/info?offset={offset}&limit={limit}&orderby={orderby}&desc={desc}&keywords={keywords}&id={document_id} \
  --header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
```

#### Request parameters

- `"dataset_id"`: (*PATH parameter*)
    The dataset id
- `offset`: (*Filter parameter*)
    The beginning number of records for paging.
- `keywords`: (*Filter parameter*)
    The keywords matches the search key workds;
- `limit`: (*Filter parameter*)
    Records number to return.
- `orderby`: (*Filter parameter*)
    The field by which the records should be sorted. This specifies the attribute or column used to order the results.
- `desc`: (*Filter parameter*)
    A boolean flag indicating whether the sorting should be in descending order.
- `id`: (*Filter parameter*)
    The id of the document to be got.

### Response

The successful response includes a JSON object like the following:

```json
{
    "code": 0,
    "data": {
        "docs": [
            {
                "chunk_count": 0,
                "create_date": "Mon, 14 Oct 2024 09:11:01 GMT",
                "create_time": 1728897061948,
                "created_by": "69736c5e723611efb51b0242ac120007",
                "id": "3bcfbf8a8a0c11ef8aba0242ac120006",
                "knowledgebase_id": "7898da028a0511efbf750242ac120005",
                "location": "Test_2.txt",
                "name": "Test_2.txt",
                "parser_config": {
                    "chunk_token_count": 128,
                    "delimiter": "\n!?。;!?",
                    "layout_recognize": true,
                    "task_page_size": 12
                },
                "parser_method": "naive",
                "process_begin_at": null,
                "process_duation": 0.0,
                "progress": 0.0,
                "progress_msg": "",
                "run": "0",
                "size": 7,
                "source_type": "local",
                "status": "1",
                "thumbnail": null,
                "token_count": 0,
                "type": "doc",
                "update_date": "Mon, 14 Oct 2024 09:11:01 GMT",
                "update_time": 1728897061948
            }
        ],
        "total": 1
    }
}
```

- `"error_code"`: `integer`  
  `0`: The operation succeeds.

  
The error response includes a JSON object like the following:

```json
{
    "code": 102,
    "message": "You don't own the dataset 7898da028a0511efbf750242ac1220005. "
}
```

## Update a file information in dataset

**PUT** `/api/v1/dataset/{dataset_id}/info/{document_id}`

Update a file in a dataset

### Request

- Method: PUT
- URL: `http://{address}/api/v1/dataset/{dataset_id}/document/{document_id}`
- Headers:
  - `content-Type: application/json`
  - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'

#### Request example

```bash
curl --request PUT \
  --url http://{address}/api/v1/dataset/{dataset_id}/document/{document_id} \
  --header 'Authorization: Bearer {YOUR_ACCESS TOKEN}' \
  --header 'Content-Type: application/json' \
  --data '{
  "name": "manual.txt", 
  "thumbnail": null, 
  "knowledgebase_id": "779333c0758611ef910f0242ac120004", 
  "parser_method": "manual", 
  "parser_config": {"chunk_token_count": 128, "delimiter": "\n!?。;!?", "layout_recognize": true, "task_page_size": 12}, 
  "source_type": "local", "type": "doc", 
  "created_by": "134408906b6811efbcd20242ac120005", 
  "size": 0, "token_count": 0, "chunk_count": 0, 
  "progress": 0.0, 
  "progress_msg": "", 
  "process_begin_at": null, 
  "process_duration": 0.0
  }'

```

#### Request parameters

- `"thumbnail"`: (*Body parameter*)  
    Thumbnail image of the document.  
    - `""`

- `"knowledgebase_id"`: (*Body parameter*)  
    Knowledge base ID related to the document.  
    - `""`

- `"parser_method"`: (*Body parameter*)  
    Method used to parse the document.  
    - `""`

- `"parser_config"`: (*Body parameter*)  
    Configuration object for the parser.  
    - If the value is `None`, a dictionary with default values will be generated.

- `"source_type"`: (*Body parameter*)  
    Source type of the document.  
    - `""`

- `"type"`: (*Body parameter*)  
    Type or category of the document.  
    - `""`

- `"created_by"`: (*Body parameter*)  
    Creator of the document.  
    - `""`

- `"name"`: (*Body parameter*)  
    Name or title of the document.  
    - `""`

- `"size"`: (*Body parameter*)  
    Size of the document in bytes or some other unit.  
    - `0`

- `"token_count"`: (*Body parameter*)  
    Number of tokens in the document.  
    - `0`

- `"chunk_count"`: (*Body parameter*)  
    Number of chunks the document is split into.  
    - `0`

- `"progress"`: (*Body parameter*)  
    Current processing progress as a percentage.  
    - `0.0`

- `"progress_msg"`: (*Body parameter*)  
    Message indicating current progress status.  
    - `""`

- `"process_begin_at"`: (*Body parameter*)  
    Start time of the document processing.  
    - `None`

- `"process_duration"`: (*Body parameter*)  
    Duration of the processing in seconds or minutes.  
    - `0.0`


### Response

The successful response includes a JSON object like the following:

```json
{
    "code": 0
}
```
  
The error response includes a JSON object like the following:

```json
{
    "code": 102,
    "message": "The dataset not own the document."
}
```

## Parse files in dataset

**POST** `/api/v1/dataset/{dataset_id}/chunk`

Parse files into chunks in a dataset

### Request

- Method: POST
- URL: `/api/v1/dataset/{dataset_id}/chunk`
- Headers:
  - `content-Type: application/json`
  - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'

#### Request example

```shell
curl --request POST \
     --url http://{address}/api/v1/dataset/{dataset_id}/chunk \
     --header 'Content-Type: application/json' \
     --header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
     --raw '{
         "documents": ["f6b170ac758811efa0660242ac120004", "97ad64b6759811ef9fc30242ac120004"]
     }'
```

#### Request parameters

- `"dataset_id"`: (*Path parameter*)
- `"documents"`: (*Body parameter*)
  - Documents to parse

### Response

The successful response includes a JSON object like the following:

```shell
{
    "code": 0
}
```
  
The error response includes a JSON object like the following:

```shell
{
    "code": 3016,
    "message": "Can't connect database"
}
```

## Stop file parsing

**DELETE** `/api/v1/dataset/{dataset_id}/chunk`

Stop file parsing

### Request

- Method: POST
- URL: `/api/v1/dataset/{dataset_id}/chunk`
- Headers:
  - `content-Type: application/json`
  - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'

#### Request example

```shell
curl --request DELETE \
     --url http://{address}/api/v1/dataset/{dataset_id}/chunk \
     --header 'Content-Type: application/json' \
     --header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
     --raw '{
         "documents": ["f6b170ac758811efa0660242ac120004", "97ad64b6759811ef9fc30242ac120004"]
     }'
```

#### Request parameters

- `"dataset_id"`: (*Path parameter*)
- `"documents"`: (*Body parameter*)
  - Documents to stop parsing

### Response

The successful response includes a JSON object like the following:

```shell
{
    "code": 0
}
```
  
The error response includes a JSON object like the following:

```shell
{
    "code": 3016,
    "message": "Can't connect database"
}
```

## Get document chunk list

**GET** `/api/v1/dataset/{dataset_id}/document/{document_id}/chunk`

Get document chunk list

### Request

- Method: GET
- URL: `/api/v1/dataset/{dataset_id}/document/{document_id}/chunk`
- Headers:
  - `content-Type: application/json`
  - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'

#### Request example

```shell
curl --request GET \
     --url http://{address}/api/v1/dataset/{dataset_id}/document/{document_id}/chunk \
     --header 'Content-Type: application/json' \
     --header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
```

#### Request parameters

- `"dataset_id"`: (*Path parameter*)
- `"document_id"`: (*Path parameter*)

### Response

The successful response includes a JSON object like the following:

```shell
{
    "code": 0
    "data": {
        "chunks": [
            {
                "available_int": 1,
                "content": "<em>advantag</em>of ragflow increas accuraci and relev:by incorpor retriev inform , ragflow can gener respons that are more accur",
                "document_keyword": "ragflow_test.txt",
                "document_id": "77df9ef4759a11ef8bdd0242ac120004",
                "id": "4ab8c77cfac1a829c8d5ed022a0808c0",
                "image_id": "",
                "important_keywords": [],
                "positions": [
                    ""
                ]
            }
        ],
        "doc": {
            "chunk_count": 5,
            "create_date": "Wed, 18 Sep 2024 08:46:16 GMT",
            "create_time": 1726649176833,
            "created_by": "134408906b6811efbcd20242ac120005",
            "id": "77df9ef4759a11ef8bdd0242ac120004",
            "knowledgebase_id": "77d9d24e759a11ef880c0242ac120004",
            "location": "ragflow_test.txt",
            "name": "ragflow_test.txt",
            "parser_config": {
                "chunk_token_count": 128,
                "delimiter": "\n!?。;!?",
                "layout_recognize": true,
                "task_page_size": 12
            },
            "parser_method": "naive",
            "process_begin_at": "Wed, 18 Sep 2024 08:46:16 GMT",
            "process_duation": 7.3213,
            "progress": 1.0,
            "progress_msg": "\nTask has been received.\nStart to parse.\nFinish parsing.\nFinished slicing files(5). Start to embedding the content.\nFinished embedding(6.16)! Start to build index!\nDone!",
            "run": "3",
            "size": 4209,
            "source_type": "local",
            "status": "1",
            "thumbnail": null,
            "token_count": 746,
            "type": "doc",
            "update_date": "Wed, 18 Sep 2024 08:46:23 GMT",
            "update_time": 1726649183321
        },
        "total": 1
    },
}
```
  
The error response includes a JSON object like the following:

```shell
{
    "code": 3016,
    "message": "Can't connect database"
}
```

## Delete document chunks

**DELETE** `/api/v1/dataset/{dataset_id}/document/{document_id}/chunk`

Delete document chunks

### Request

- Method: DELETE
- URL: `/api/v1/dataset/{dataset_id}/document/{document_id}/chunk`
- Headers:
  - `content-Type: application/json`
  - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'

#### Request example

```shell
curl --request DELETE \
     --url http://{address}/api/v1/dataset/{dataset_id}/document/{document_id}/chunk \
     --header 'Content-Type: application/json' \
     --header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
     --raw '{
         "chunks": ["f6b170ac758811efa0660242ac120004", "97ad64b6759811ef9fc30242ac120004"]
     }'
```

## Update document chunk

**PUT** `/api/v1/dataset/{dataset_id}/document/{document_id}/chunk`

Update document chunk

### Request

- Method: PUT
- URL: `/api/v1/dataset/{dataset_id}/document/{document_id}/chunk`
- Headers:
  - `content-Type: application/json`
  - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'

#### Request example

```shell
curl --request PUT \
     --url http://{address}/api/v1/dataset/{dataset_id}/document/{document_id}/chunk \
     --header 'Content-Type: application/json' \
     --header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
     --raw '{
        "chunk_id": "d87fb0b7212c15c18d0831677552d7de",  
        "knowledgebase_id": null,  
        "name": "",  
        "content": "ragflow123",  
        "important_keywords": [],   
        "document_id": "e6bbba92759511efaa900242ac120004",  
        "status": "1" 
     }'
```

## Insert document chunks

**POST** `/api/v1/dataset/{dataset_id}/document/{document_id}/chunk`

Insert document chunks

### Request

- Method: POST
- URL: `/api/v1/dataset/{dataset_id}/document/{document_id}/chunk`
- Headers:
  - `content-Type: application/json`
  - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'

#### Request example

```shell
curl --request POST \
     --url http://{address}/api/v1/dataset/{dataset_id}/document/{document_id}/chunk \
     --header 'Content-Type: application/json' \
     --header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
     --raw '{
         "document_id": "97ad64b6759811ef9fc30242ac120004",
         "content": ["ragflow content", "ragflow content"]
     }'
```

## Dataset retrieval test

**GET** `/api/v1/dataset/{dataset_id}/retrieval`

Retrieval test of a dataset

### Request

- Method: GET
- URL: `/api/v1/dataset/{dataset_id}/retrieval`
- Headers:
  - `content-Type: application/json`
  - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'

#### Request example

```shell
curl --request GET \
     --url http://{address}/api/v1/dataset/{dataset_id}/retrieval \
     --header 'Content-Type: application/json' \
     --header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
     --raw '{
         "query_text": "This is a cat."
     }'
```

## Create chat

**POST** `/api/v1/chat`

Create a chat

### Request

- Method: POST
- URL: `http://{address}/api/v1/chat`
- Headers:
  - `content-Type: application/json`
  - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
- Body:
  - `"name"`: `string`
  - `"avatar"`: `string`
  - `"knowledgebases"`: `List[DataSet]`
  - `"id"`: `string`
  - `"llm"`: `LLM`
  - `"prompt"`: `Prompt`


#### Request example

```shell
curl --request POST \
     --url http://{address}/api/v1/chat \
     --header 'Content-Type: application/json' \
     --header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
     --data-binary '{
   "knowledgebases": [
    {
      "avatar": null,
      "chunk_count": 0,
      "description": null,
      "document_count": 0,
      "embedding_model": "",
      "id": "0b2cbc8c877f11ef89070242ac120005",
      "language": "English",
      "name": "Test_assistant",
      "parse_method": "naive",
      "parser_config": {
        "pages": [
          [
            1,
            1000000
          ]
        ]
      },
      "permission": "me",
      "tenant_id": "4fb0cd625f9311efba4a0242ac120006"
    }
  ],
    "name":"new_chat_1"
}'
```

#### Request parameters

- `"name"`: (*Body parameter*)  
    The name of the created chat.  
    - `"assistant"`

- `"avatar"`: (*Body parameter*)  
    The icon of the created chat.  
    - `"path"`

- `"knowledgebases"`: (*Body parameter*)  
    Select knowledgebases associated.  
    - `["kb1"]`

- `"id"`: (*Body parameter*)  
    The id of the created chat.  
    - `""`

- `"llm"`: (*Body parameter*)  
    The LLM of the created chat.  
    - If the value is `None`, a dictionary with default values will be generated.

- `"prompt"`: (*Body parameter*)  
    The prompt of the created chat.  
    - If the value is `None`, a dictionary with default values will be generated.

---

##### Chat.LLM parameters:

- `"model_name"`: (*Body parameter*)  
    Large language chat model.  
    - If it is `None`, it will return the user's default model.

- `"temperature"`: (*Body parameter*)  
    Controls the randomness of predictions by the model. A lower temperature makes the model more confident, while a higher temperature makes it more creative and diverse.  
    - `0.1`

- `"top_p"`: (*Body parameter*)  
    Also known as "nucleus sampling," it focuses on the most likely words, cutting off the less probable ones.  
    - `0.3`

- `"presence_penalty"`: (*Body parameter*)  
    Discourages the model from repeating the same information by penalizing repeated content.  
    - `0.4`

- `"frequency_penalty"`: (*Body parameter*)  
    Reduces the model’s tendency to repeat words frequently.  
    - `0.7`

- `"max_tokens"`: (*Body parameter*)  
    Sets the maximum length of the model’s output, measured in tokens (words or pieces of words).  
    - `512`

---

##### Chat.Prompt parameters:

- `"similarity_threshold"`: (*Body parameter*)  
    Filters out chunks with similarity below this threshold.  
    - `0.2`

- `"keywords_similarity_weight"`: (*Body parameter*)  
    Weighted keywords similarity and vector cosine similarity; the sum of weights is 1.0.  
    - `0.7`

- `"top_n"`: (*Body parameter*)  
    Only the top N chunks above the similarity threshold will be fed to LLMs.  
    - `8`

- `"variables"`: (*Body parameter*)  
    Variables help with different chat strategies by filling in the 'System' part of the prompt.  
    - `[{"key": "knowledge", "optional": True}]`

- `"rerank_model"`: (*Body parameter*)  
    If empty, it uses vector cosine similarity; otherwise, it uses rerank score.  
    - `""`

- `"empty_response"`: (*Body parameter*)  
    If nothing is retrieved, this will be used as the response. Leave blank if LLM should provide its own opinion.  
    - `None`

- `"opener"`: (*Body parameter*)  
    The welcome message for clients.  
    - `"Hi! I'm your assistant, what can I do for you?"`

- `"show_quote"`: (*Body parameter*)  
    Indicates whether the source of the original text should be displayed.  
    - `True`

- `"prompt"`: (*Body parameter*)  
    Instructions for LLM to follow when answering questions, such as character design or answer length.  
    - `"You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence 'The answer you are looking for is not found in the knowledge base!' Answers need to consider chat history. Here is the knowledge base: {knowledge} The above is the knowledge base."`
### Response
Success:
```json
{
    "code": 0,
    "data": {
        "avatar": "",
        "create_date": "Fri, 11 Oct 2024 03:23:24 GMT",
        "create_time": 1728617004635,
        "description": "A helpful Assistant",
        "do_refer": "1",
        "id": "2ca4b22e878011ef88fe0242ac120005",
        "knowledgebases": [
            {
                "avatar": null,
                "chunk_count": 0,
                "description": null,
                "document_count": 0,
                "embedding_model": "",
                "id": "0b2cbc8c877f11ef89070242ac120005",
                "language": "English",
                "name": "Test_assistant",
                "parse_method": "naive",
                "parser_config": {
                    "pages": [
                        [
                            1,
                            1000000
                        ]
                    ]
                },
                "permission": "me",
                "tenant_id": "4fb0cd625f9311efba4a0242ac120006"
            }
        ],
        "language": "English",
        "llm": {
            "frequency_penalty": 0.7,
            "max_tokens": 512,
            "model_name": "deepseek-chat___OpenAI-API@OpenAI-API-Compatible",
            "presence_penalty": 0.4,
            "temperature": 0.1,
            "top_p": 0.3
        },
        "name": "new_chat_1",
        "prompt": {
            "empty_response": "Sorry! 知识库中未找到相关内容!",
            "keywords_similarity_weight": 0.3,
            "opener": "您好,我是您的助手小樱,长得可爱又善良,can I help you?",
            "prompt": "你是一个智能助手,请总结知识库的内容来回答问题,请列举知识库中的数据详细回答。当所有知识库内容都与问题无关时,你的回答必须包括“知识库中未找到您要的答案!”这句话。回答需要考虑聊天历史。\n            以下是知识库:\n            {knowledge}\n            以上是知识库。",
            "rerank_model": "",
            "similarity_threshold": 0.2,
            "top_n": 6,
            "variables": [
                {
                    "key": "knowledge",
                    "optional": false
                }
            ]
        },
        "prompt_type": "simple",
        "status": "1",
        "tenant_id": "69736c5e723611efb51b0242ac120007",
        "top_k": 1024,
        "update_date": "Fri, 11 Oct 2024 03:23:24 GMT",
        "update_time": 1728617004635
    }
}
```
Error:
```json
{
    "code": 102,
    "message": "Duplicated chat name in creating dataset."
}
```

## Update chat

**PUT** `/api/v1/chat/{chat_id}`

Update a chat

### Request

- Method: PUT
- URL: `http://{address}/api/v1/chat/{chat_id}`
- Headers:
  - `content-Type: application/json`
  - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
- Body: (Refer to the "Create chat" for the complete structure of the request body.)
  
#### Request example
```bash
curl --request PUT \
  --url http://{address}/api/v1/chat/{chat_id} \
  --header 'Content-Type: application/json' \
  --header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' \
  --data '{
    "name":"Test"
}'
```
#### Parameters
(Refer to the "Create chat" for the complete structure of the request parameters.)

### Response
Success
```json
{
    "code": 0
}
```
Error
```json
{
    "code": 102,
    "message": "Duplicated chat name in updating dataset."
}
```

## Delete chats

**DELETE** `/api/v1/chat`

Delete chats

### Request

- Method: DELETE
- URL: `http://{address}/api/v1/chat`
- Headers:
  - `content-Type: application/json`
  - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
- Body:
  - `ids`: List[string]
#### Request example
```bash
# Either id or name must be provided, but not both.
curl --request DELETE \
  --url http://{address}/api/v1/chat \
  --header 'Content-Type: application/json' \
  --header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' \
  --data '{
  "ids": ["test_1", "test_2"]
  }'
}'
```
#### Request parameters:

- `"ids"`: (*Body parameter*)  
    IDs of the chats to be deleted.  
    - `None`
### Response
Success
```json
{
    "code": 0
}
```
Error
```json
{
    "code": 102,
    "message": "ids are required"
}
```

## List chats

**GET** `/api/v1/chat?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&name={dataset_name}&id={dataset_id}`

List chats based on filter criteria.

### Request

- Method: GET
- URL: `http://{address}/api/v1/chat?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&name={dataset_name}&id={dataset_id}`
- Headers:
  - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'

#### Request example

```bash
curl --request GET \
  --url http://{address}/api/v1/chat?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&name={dataset_name}&id={dataset_id} \
  --header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
```

#### Request parameters
- `"page"`: (*Path parameter*)  
    The current page number to retrieve from the paginated data. This parameter determines which set of records will be fetched.  
    - `1`

- `"page_size"`: (*Path parameter*)  
    The number of records to retrieve per page. This controls how many records will be included in each page.  
    - `1024`

- `"orderby"`: (*Path parameter*)  
    The field by which the records should be sorted. This specifies the attribute or column used to order the results.  
    - `"create_time"`

- `"desc"`: (*Path parameter*)  
    A boolean flag indicating whether the sorting should be in descending order.  
    - `True`

- `"id"`: (*Path parameter*)  
    The ID of the chat to be retrieved.  
    - `None`

- `"name"`: (*Path parameter*)  
    The name of the chat to be retrieved.  
    - `None`

### Response
Success
```json
{
    "code": 0,
    "data": [
        {
            "avatar": "",
            "create_date": "Fri, 11 Oct 2024 03:23:24 GMT",
            "create_time": 1728617004635,
            "description": "A helpful Assistant",
            "do_refer": "1",
            "id": "2ca4b22e878011ef88fe0242ac120005",
            "knowledgebases": [
                {
                    "avatar": "",
                    "chunk_num": 0,
                    "create_date": "Fri, 11 Oct 2024 03:15:18 GMT",
                    "create_time": 1728616518986,
                    "created_by": "69736c5e723611efb51b0242ac120007",
                    "description": "",
                    "doc_num": 0,
                    "embd_id": "BAAI/bge-large-zh-v1.5",
                    "id": "0b2cbc8c877f11ef89070242ac120005",
                    "language": "English",
                    "name": "test_delete_chat",
                    "parser_config": {
                        "chunk_token_count": 128,
                        "delimiter": "\n!?。;!?",
                        "layout_recognize": true,
                        "task_page_size": 12
                    },
                    "parser_id": "naive",
                    "permission": "me",
                    "similarity_threshold": 0.2,
                    "status": "1",
                    "tenant_id": "69736c5e723611efb51b0242ac120007",
                    "token_num": 0,
                    "update_date": "Fri, 11 Oct 2024 04:01:31 GMT",
                    "update_time": 1728619291228,
                    "vector_similarity_weight": 0.3
                }
            ],
            "language": "English",
            "llm": {
                "frequency_penalty": 0.7,
                "max_tokens": 512,
                "model_name": "deepseek-chat___OpenAI-API@OpenAI-API-Compatible",
                "presence_penalty": 0.4,
                "temperature": 0.1,
                "top_p": 0.3
            },
            "name": "Test",
            "prompt": {
                "empty_response": "Sorry! 知识库中未找到相关内容!",
                "keywords_similarity_weight": 0.3,
                "opener": "您好,我是您的助手小樱,长得可爱又善良,can I help you?",
                "prompt": "你是一个智能助手,请总结知识库的内容来回答问题,请列举知识库中的数据详细回答。当所有知识库内容都与问题无关时,你的回答必须包括“知识库中未找到您要的答案!”这句话。回答需要考虑聊天历史。\n            以下是知识库:\n            {knowledge}\n            以上是知识库。",
                "rerank_model": "",
                "similarity_threshold": 0.2,
                "top_n": 6,
                "variables": [
                    {
                        "key": "knowledge",
                        "optional": false
                    }
                ]
            },
            "prompt_type": "simple",
            "status": "1",
            "tenant_id": "69736c5e723611efb51b0242ac120007",
            "top_k": 1024,
            "update_date": "Fri, 11 Oct 2024 03:47:58 GMT",
            "update_time": 1728618478392
        }
    ]
}
```
Error
```json
{
    "code": 102,
    "message": "The chat doesn't exist"
}
```

## Create a chat session

**POST** `/api/v1/chat/{chat_id}/session`

Create a chat session

### Request

- Method: POST
- URL: `http://{address}/api/v1/chat/{chat_id}/session`
- Headers:
  - `content-Type: application/json`
  - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' 
- Body:
  - name: `string`

#### Request example
```bash
curl --request POST \
  --url http://{address}/api/v1/chat/{chat_id}/session \
  --header 'Content-Type: application/json' \
  --header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' \
  --data '{
    "name": "new session"
  }'
```
#### Request parameters
- `"id"`: (*Body parameter*)  
    The ID of the created session used to identify different sessions.  
    - `None`  
    - `id` cannot be provided when creating.

- `"name"`: (*Body parameter*)  
    The name of the created session.  
    - `"New session"`

- `"messages"`: (*Body parameter*)  
    The messages of the created session.  
    - `[{"role": "assistant", "content": "Hi! I am your assistant, can I help you?"}]`  
    - `messages` cannot be provided when creating.

- `"chat_id"`: (*Path parameter*)  
    The ID of the associated chat.  
    - `""`  
    - `chat_id` cannot be changed.

### Response
Success
```json
{
    "code": 0,
    "data": {
        "chat_id": "2ca4b22e878011ef88fe0242ac120005",
        "create_date": "Fri, 11 Oct 2024 08:46:14 GMT",
        "create_time": 1728636374571,
        "id": "4606b4ec87ad11efbc4f0242ac120006",
        "messages": [
            {
                "content": "Hi! I am your assistant,can I help you?",
                "role": "assistant"
            }
        ],
        "name": "new session",
        "update_date": "Fri, 11 Oct 2024 08:46:14 GMT",
        "update_time": 1728636374571
    }
}
```
Error
```json
{
    "code": 102,
    "message": "Name can not be empty."
}
```

## List the sessions of a chat

**GET** `/api/v1/chat/{chat_id}/session?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&name={dataset_name}&id={dataset_id}`

List all sessions under the chat based on the filtering criteria.

### Request

- Method: GET
- URL: `http://{address}/api/v1/chat/{chat_id}/session?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&name={dataset_name}&id={dataset_id}`
- Headers:
  - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'

#### Request example
```bash
curl --request GET \
  --url http://{address}/api/v1/chat/{chat_id}/session?page={page}&page_size={page_size}&orderby={orderby}&desc={desc}&name={dataset_name}&id={dataset_id} \
  --header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
```

#### Request Parameters
- `"page"`: (*Path parameter*)  
    The current page number to retrieve from the paginated data. This parameter determines which set of records will be fetched.  
    - `1`

- `"page_size"`: (*Path parameter*)  
    The number of records to retrieve per page. This controls how many records will be included in each page.  
    - `1024`

- `"orderby"`: (*Path parameter*)  
    The field by which the records should be sorted. This specifies the attribute or column used to order the results.  
    - `"create_time"`

- `"desc"`: (*Path parameter*)  
    A boolean flag indicating whether the sorting should be in descending order.  
    - `True`

- `"id"`: (*Path parameter*)  
    The ID of the session to be retrieved.  
    - `None`

- `"name"`: (*Path parameter*)  
    The name of the session to be retrieved.  
    - `None`
### Response
Success
```json
{
    "code": 0,
    "data": [
        {
            "chat": "2ca4b22e878011ef88fe0242ac120005",
            "create_date": "Fri, 11 Oct 2024 08:46:43 GMT",
            "create_time": 1728636403974,
            "id": "578d541e87ad11ef96b90242ac120006",
            "messages": [
                {
                    "content": "Hi! I am your assistant,can I help you?",
                    "role": "assistant"
                }
            ],
            "name": "new session",
            "update_date": "Fri, 11 Oct 2024 08:46:43 GMT",
            "update_time": 1728636403974
        }
    ]
}
```
Error
```json
{
    "code": 102,
    "message": "The session doesn't exist"
}
```


## Delete chat sessions

**DELETE** `/api/v1/chat/{chat_id}/session`

Delete chat sessions

### Request

- Method: DELETE
- URL: `http://{address}/api/v1/chat/{chat_id}/session`
- Headers:
  - `content-Type: application/json`
  - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
- Body:
  - `ids`: List[string]

#### Request example
```bash
# Either id or name must be provided, but not both.
curl --request DELETE \
--url http://{address}/api/v1/chat/{chat_id}/session \
--header 'Content-Type: application/json' \
--header 'Authorization: Bear {YOUR_ACCESS_TOKEN}' \
  --data '{
  "ids": ["test_1", "test_2"]
  }'
```

#### Request Parameters
- `ids`: (*Body Parameter*)  
    IDs of the sessions to be deleted.
    - `None`
### Response
Success
```json
{
    "code": 0
}
```
Error
```json
{
    "code": 102,
    "message": "The chat doesn't own the session"
}
```
## Update a chat session

**PUT** `/api/v1/chat/{chat_id}/session/{session_id}`

Update a chat session

### Request

- Method: PUT
- URL: `http://{address}/api/v1/chat/{chat_id}/session/{session_id}`
- Headers:
  - `content-Type: application/json`
  - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
- Body:
  - `name`: string

#### Request example
```bash
curl --request PUT \
  --url http://{address}/api/v1/chat/{chat_id}/session/{session_id} \
  --header 'Content-Type: application/json' \
  --header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' \
  --data '{
    "name": "Updated session"
  }'

```

#### Request Parameter
- `name`:(*Body Parameter)  
    The name of the created session.
    - `None`

### Response
Success
```json
{
    "code": 0
}
```
Error
```json
{
    "code": 102,
    "message": "Name can not be empty."
}
```

## Chat with a chat session

**POST** `/api/v1/chat/{chat_id}/session/{session_id}/completion`

Chat with a chat session

### Request

- Method: POST
- URL: `http://{address} /api/v1/chat/{chat_id}/session/{session_id}/completion`
- Headers:
  - `content-Type: application/json`
  - 'Authorization: Bearer {YOUR_ACCESS_TOKEN}'
- Body:
  - `question`: string
  - `stream`: bool


#### Request example
```bash
curl --request POST \
  --url http://{address} /api/v1/chat/{chat_id}/session/{session_id}/completion \
  --header 'Content-Type: application/json' \
  --header 'Authorization: Bearer {YOUR_ACCESS_TOKEN}' \
  --data-binary '{
    "question":  "你好!",
    "stream": true
  }'
```
#### Request Parameters
- `question`:(*Body Parameter*)  
    The question you want to ask.
    - question is required.
    `None`
- `stream`: (*Body Parameter*)  
    The approach of streaming text generation.
    `False`
### Response
Success
```json
data: {
    "code": 0,
    "data": {
        "answer": "您好!有什么具体的问题或者需要的帮助",
        "reference": {},
        "audio_binary": null,
        "id": "31153052-7bac-4741-a513-ed07d853f29e"
    }
}

data: {
    "code": 0,
    "data": {
        "answer": "您好!有什么具体的问题或者需要的帮助可以告诉我吗?我在这里是为了帮助",
        "reference": {},
        "audio_binary": null,
        "id": "31153052-7bac-4741-a513-ed07d853f29e"
    }
}

data: {
    "code": 0,
    "data": {
        "answer": "您好!有什么具体的问题或者需要的帮助可以告诉我吗?我在这里是为了帮助您的。如果您有任何疑问或是需要获取",
        "reference": {},
        "audio_binary": null,
        "id": "31153052-7bac-4741-a513-ed07d853f29e"
    }
}

data: {
    "code": 0,
    "data": {
        "answer": "您好!有什么具体的问题或者需要的帮助可以告诉我吗?我在这里是为了帮助您的。如果您有任何疑问或是需要获取某些信息,请随时提出。",
        "reference": {},
        "audio_binary": null,
        "id": "31153052-7bac-4741-a513-ed07d853f29e"
    }
}

data: {
    "code": 0,
    "data": {
        "answer": "您好!有什么具体的问题或者需要的帮助可以告诉我吗 ##0$$?我在这里是为了帮助您的。如果您有任何疑问或是需要获取某些信息,请随时提出。",
        "reference": {
            "total": 19,
            "chunks": [
                {
                    "chunk_id": "9d87f9d70a0d8a7565694a81fd4c5d5f",
                    "content_ltks": "当所有知识库内容都与问题无关时 ,你的回答必须包括“知识库中未找到您要的答案!”这句话。回答需要考虑聊天历史。\r\n以下是知识库:\r\n{knowledg}\r\n以上是知识库\r\n\"\"\"\r\n 1\r\n 2\r\n 3\r\n 4\r\n 5\r\n 6\r\n总结\r\n通过上面的介绍,可以对开源的 ragflow有了一个大致的了解,与前面的有道qanyth整体流程还是比较类似的。 ",
                    "content_with_weight": "当所有知识库内容都与问题无关时,你的回答必须包括“知识库中未找到您要的答案!”这句话。回答需要考虑聊天历史。\r\n    以下是知识库:\r\n    {knowledge}\r\n    以上是知识库\r\n\"\"\"\r\n1\r\n2\r\n3\r\n4\r\n5\r\n6\r\n总结\r\n通过上面的介绍,可以对开源的 RagFlow 有了一个大致的了解,与前面的 有道 QAnything 整体流程还是比较类似的。",
                    "doc_id": "5c5999ec7be811ef9cab0242ac120005",
                    "docnm_kwd": "1.txt",
                    "kb_id": "c7ee74067a2c11efb21c0242ac120006",
                    "important_kwd": [],
                    "img_id": "",
                    "similarity": 0.38337178633282265,
                    "vector_similarity": 0.3321336754679629,
                    "term_similarity": 0.4053309767034769,
                    "positions": [
                        ""
                    ]
                },
                {
                    "chunk_id": "895d34de762e674b43e8613c6fb54c6d",
                    "content_ltks": "\r\n\r\n实际内容可能会超过大模型的输入token数量,因此在调用大模型前会调用api/db/servic/dialog_service.py文件中 messag_fit_in ()根据大模型可用的 token数量进行过滤。这部分与有道的 qanyth的实现大同小异,就不额外展开了。\r\n\r\n将检索的内容,历史聊天记录以及问题构造为 prompt ,即可作为大模型的输入了 ,默认的英文prompt如下所示:\r\n\r\n\"\"\"\r\nyou are an intellig assistant. pleas summar the content of the knowledg base to answer the question. pleas list thedata in the knowledg base and answer in detail. when all knowledg base content is irrelev to the question , your answer must includ the sentenc\"the answer you are lookfor isnot found in the knowledg base!\" answer needto consid chat history.\r\n here is the knowledg base:\r\n{ knowledg}\r\nthe abov is the knowledg base.\r\n\"\"\"\r\n1\r\n 2\r\n 3\r\n 4\r\n 5\r\n 6\r\n对应的中文prompt如下所示:\r\n\r\n\"\"\"\r\n你是一个智能助手,请总结知识库的内容来回答问题,请列举知识库中的数据详细回答。 ",
                    "content_with_weight": "\r\n\r\n实际内容可能会超过大模型的输入 token 数量,因此在调用大模型前会调用 api/db/services/dialog_service.py 文件中 message_fit_in() 根据大模型可用的 token 数量进行过滤。这部分与有道的 QAnything 的实现大同小异,就不额外展开了。\r\n\r\n将检索的内容,历史聊天记录以及问题构造为 prompt,即可作为大模型的输入了,默认的英文 prompt 如下所示:\r\n\r\n\"\"\"\r\nYou are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\" Answers need to consider chat history.\r\n      Here is the knowledge base:\r\n      {knowledge}\r\n      The above is the knowledge base.\r\n\"\"\"\r\n1\r\n2\r\n3\r\n4\r\n5\r\n6\r\n对应的中文 prompt 如下所示:\r\n\r\n\"\"\"\r\n你是一个智能助手,请总结知识库的内容来回答问题,请列举知识库中的数据详细回答。",
                    "doc_id": "5c5999ec7be811ef9cab0242ac120005",
                    "docnm_kwd": "1.txt",
                    "kb_id": "c7ee74067a2c11efb21c0242ac120006",
                    "important_kwd": [],
                    "img_id": "",
                    "similarity": 0.2788204323926715,
                    "vector_similarity": 0.35489427679953667,
                    "term_similarity": 0.2462173562183008,
                    "positions": [
                        ""
                    ]
                }
            ],
            "doc_aggs": [
                {
                    "doc_name": "1.txt",
                    "doc_id": "5c5999ec7be811ef9cab0242ac120005",
                    "count": 2
                }
            ]
        },
        "prompt": "你是一个智能助手,请总结知识库的内容来回答问题,请列举知识库中的数据详细回答。当所有知识库内容都与问题无关时,你的回答必须包括“知识库中未找到您要的答案!”这句话。回答需要考虑聊天历史。\n            以下是知识库:\n            当所有知识库内容都与问题无关时,你的回答必须包括“知识库中未找到您要的答案!”这句话。回答需要考虑聊天历史。\r\n    以下是知识库:\r\n    {knowledge}\r\n    以上是知识库\r\n\"\"\"\r\n1\r\n2\r\n3\r\n4\r\n5\r\n6\r\n总结\r\n通过上面的介绍,可以对开源的 RagFlow 有了一个大致的了解,与前面的 有道 QAnything 整体流程还是比较类似的。\n\n------\n\n\r\n\r\n实际内容可能会超过大模型的输入 token 数量,因此在调用大模型前会调用 api/db/services/dialog_service.py 文件中 message_fit_in() 根据大模型可用的 token 数量进行过滤。这部分与有道的 QAnything 的实现大同小异,就不额外展开了。\r\n\r\n将检索的内容,历史聊天记录以及问题构造为 prompt,即可作为大模型的输入了,默认的英文 prompt 如下所示:\r\n\r\n\"\"\"\r\nYou are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\" Answers need to consider chat history.\r\n      Here is the knowledge base:\r\n      {knowledge}\r\n      The above is the knowledge base.\r\n\"\"\"\r\n1\r\n2\r\n3\r\n4\r\n5\r\n6\r\n对应的中文 prompt 如下所示:\r\n\r\n\"\"\"\r\n你是一个智能助手,请总结知识库的内容来回答问题,请列举知识库中的数据详细回答。\n            以上是知识库。\n\n### Query:\n你好,请问有什么问题需要我帮忙解答吗?\n\n### Elapsed\n  - Retrieval: 9131.1 ms\n  - LLM: 12802.6 ms",
        "id": "31153052-7bac-4741-a513-ed07d853f29e"
    }
}

data:{
    "code": 0,
    "data": true
}
```
Error
```json
{
    "code": 102,
    "message": "Please input your question."
}
```