File size: 6,043 Bytes
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
8bc2fc9
aeb6dbc
 
 
 
82adb1c
3d5f9ea
 
 
aeb6dbc
 
 
 
 
 
 
6e567cd
 
 
aeb6dbc
 
 
 
 
 
6e567cd
aeb6dbc
 
 
6e567cd
8bc2fc9
6e567cd
 
aeb6dbc
6e567cd
 
 
aeb6dbc
 
 
 
 
6e567cd
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82adb1c
aeb6dbc
0404a52
aeb6dbc
 
 
 
 
 
 
0404a52
aeb6dbc
 
 
 
 
 
 
 
 
0404a52
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import logging
from tika import parser
import re
from io import BytesIO

from deepdoc.parser.utils import get_text
from rag.nlp import bullets_category, is_english,remove_contents_table, \
    hierarchical_merge, make_colon_as_title, naive_merge, random_choices, tokenize_table, \
    tokenize_chunks
from rag.nlp import rag_tokenizer
from deepdoc.parser import PdfParser, DocxParser, PlainParser, HtmlParser


class Pdf(PdfParser):
    def __call__(self, filename, binary=None, from_page=0,
                 to_page=100000, zoomin=3, callback=None):
        from timeit import default_timer as timer
        start = timer()
        callback(msg="OCR started")
        self.__images__(
            filename if not binary else binary,
            zoomin,
            from_page,
            to_page,
            callback)
        callback(msg="OCR finished ({:.2f}s)".format(timer() - start))

        start = timer()
        self._layouts_rec(zoomin)
        callback(0.67, "Layout analysis ({:.2f}s)".format(timer() - start))
        logging.debug("layouts: {}".format(timer() - start))

        start = timer()
        self._table_transformer_job(zoomin)
        callback(0.68, "Table analysis ({:.2f}s)".format(timer() - start))

        start = timer()
        self._text_merge()
        tbls = self._extract_table_figure(True, zoomin, True, True)
        self._naive_vertical_merge()
        self._filter_forpages()
        self._merge_with_same_bullet()
        callback(0.8, "Text extraction ({:.2f}s)".format(timer() - start))

        return [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno", ""))
                for b in self.boxes], tbls


def chunk(filename, binary=None, from_page=0, to_page=100000,
          lang="Chinese", callback=None, **kwargs):
    """
        Supported file formats are docx, pdf, txt.
        Since a book is long and not all the parts are useful, if it's a PDF,
        please setup the page ranges for every book in order eliminate negative effects and save elapsed computing time.
    """
    doc = {
        "docnm_kwd": filename,
        "title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename))
    }
    doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
    pdf_parser = None
    sections, tbls = [], []
    if re.search(r"\.docx$", filename, re.IGNORECASE):
        callback(0.1, "Start to parse.")
        doc_parser = DocxParser()
        # TODO: table of contents need to be removed
        sections, tbls = doc_parser(
            binary if binary else filename, from_page=from_page, to_page=to_page)
        remove_contents_table(sections, eng=is_english(
            random_choices([t for t, _ in sections], k=200)))
        tbls = [((None, lns), None) for lns in tbls]
        callback(0.8, "Finish parsing.")

    elif re.search(r"\.pdf$", filename, re.IGNORECASE):
        pdf_parser = Pdf() if kwargs.get(
            "parser_config", {}).get(
            "layout_recognize", True) else PlainParser()
        sections, tbls = pdf_parser(filename if not binary else binary,
                                    from_page=from_page, to_page=to_page, callback=callback)

    elif re.search(r"\.txt$", filename, re.IGNORECASE):
        callback(0.1, "Start to parse.")
        txt = get_text(filename, binary)
        sections = txt.split("\n")
        sections = [(line, "") for line in sections if line]
        remove_contents_table(sections, eng=is_english(
            random_choices([t for t, _ in sections], k=200)))
        callback(0.8, "Finish parsing.")

    elif re.search(r"\.(htm|html)$", filename, re.IGNORECASE):
        callback(0.1, "Start to parse.")
        sections = HtmlParser()(filename, binary)
        sections = [(line, "") for line in sections if line]
        remove_contents_table(sections, eng=is_english(
            random_choices([t for t, _ in sections], k=200)))
        callback(0.8, "Finish parsing.")

    elif re.search(r"\.doc$", filename, re.IGNORECASE):
        callback(0.1, "Start to parse.")
        binary = BytesIO(binary)
        doc_parsed = parser.from_buffer(binary)
        sections = doc_parsed['content'].split('\n')
        sections = [(line, "") for line in sections if line]
        remove_contents_table(sections, eng=is_english(
            random_choices([t for t, _ in sections], k=200)))
        callback(0.8, "Finish parsing.")

    else:
        raise NotImplementedError(
            "file type not supported yet(doc, docx, pdf, txt supported)")

    make_colon_as_title(sections)
    bull = bullets_category(
        [t for t in random_choices([t for t, _ in sections], k=100)])
    if bull >= 0:
        chunks = ["\n".join(ck)
                  for ck in hierarchical_merge(bull, sections, 5)]
    else:
        sections = [s.split("@") for s, _ in sections]
        sections = [(pr[0], "@" + pr[1]) if len(pr) == 2 else (pr[0], '') for pr in sections ]
        chunks = naive_merge(
            sections, kwargs.get(
                "chunk_token_num", 256), kwargs.get(
                "delimer", "\n。;!?"))

    # is it English
    # is_english(random_choices([t for t, _ in sections], k=218))
    eng = lang.lower() == "english"

    res = tokenize_table(tbls, doc, eng)
    res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))

    return res


if __name__ == "__main__":
    import sys

    def dummy(prog=None, msg=""):
        pass
    chunk(sys.argv[1], from_page=1, to_page=10, callback=dummy)