File size: 5,202 Bytes
2459d65 2964cd4 2459d65 8593299 5f2ab18 61ec69c 49f80bf 8593299 61ec69c 8593299 028acc4 8593299 61ec69c 1d1faf9 61ec69c 8593299 3cefaa0 7e0b5ff b691127 8593299 61ec69c 49f80bf 8593299 61ec69c 49f80bf 8593299 ca3cca9 8593299 ca3cca9 8593299 279ca43 8593299 61ec69c 49f80bf 8593299 6840107 8593299 1d93b24 8593299 61ec69c 8593299 281a904 8593299 281a904 8593299 281a904 2964cd4 8593299 907411d 3d1e6a7 8593299 281a904 8593299 281a904 847f564 8593299 b83edb4 8593299 3d1e6a7 59ca130 907411d 9741edc 2964cd4 d6e0c08 2964cd4 8b00b96 2964cd4 e2bab34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
# The type of doc engine to use.
# Available options:
# - `elasticsearch` (default)
# - `infinity` (https://github.com/infiniflow/infinity)
DOC_ENGINE=${DOC_ENGINE:-elasticsearch}
# ------------------------------
# docker env var for specifying vector db type at startup
# (based on the vector db type, the corresponding docker
# compose profile will be used)
# ------------------------------
COMPOSE_PROFILES=${DOC_ENGINE}
# The version of Elasticsearch.
STACK_VERSION=8.11.3
# The hostname where the Elasticsearch service is exposed
ES_HOST=es01
# The port used to expose the Elasticsearch service to the host machine,
# allowing EXTERNAL access to the service running inside the Docker container.
ES_PORT=1200
# The password for Elasticsearch.
ELASTIC_PASSWORD=infini_rag_flow
# The port used to expose the Kibana service to the host machine,
# allowing EXTERNAL access to the service running inside the Docker container.
KIBANA_PORT=6601
KIBANA_USER=rag_flow
KIBANA_PASSWORD=infini_rag_flow
# The maximum amount of the memory, in bytes, that a specific Docker container can use while running.
# Update it according to the available memory in the host machine.
MEM_LIMIT=8073741824
# The hostname where the Infinity service is exposed
INFINITY_HOST=infinity
# Port to expose Infinity API to the host
INFINITY_THRIFT_PORT=23817
INFINITY_HTTP_PORT=23820
INFINITY_PSQL_PORT=5432
# The password for MySQL.
MYSQL_PASSWORD=infini_rag_flow
# The hostname where the MySQL service is exposed
MYSQL_HOST=mysql
# The database of the MySQL service to use
MYSQL_DBNAME=rag_flow
# The port used to expose the MySQL service to the host machine,
# allowing EXTERNAL access to the MySQL database running inside the Docker container.
MYSQL_PORT=5455
# The hostname where the MySQL service is exposed
MINIO_HOST=minio
# The port used to expose the MinIO console interface to the host machine,
# allowing EXTERNAL access to the web-based console running inside the Docker container.
MINIO_CONSOLE_PORT=9001
# The port used to expose the MinIO API service to the host machine,
# allowing EXTERNAL access to the MinIO object storage service running inside the Docker container.
MINIO_PORT=9000
# The username for MinIO.
# When updated, you must revise the `minio.user` entry in service_conf.yaml accordingly.
MINIO_USER=rag_flow
# The password for MinIO.
# When updated, you must revise the `minio.password` entry in service_conf.yaml accordingly.
MINIO_PASSWORD=infini_rag_flow
# The hostname where the Redis service is exposed
REDIS_HOST=redis
# The port used to expose the Redis service to the host machine,
# allowing EXTERNAL access to the Redis service running inside the Docker container.
REDIS_PORT=6379
# The password for Redis.
REDIS_PASSWORD=infini_rag_flow
# The port used to expose RAGFlow's HTTP API service to the host machine,
# allowing EXTERNAL access to the service running inside the Docker container.
SVR_HTTP_PORT=9380
# The RAGFlow Docker image to download.
# Defaults to the v0.14.1-slim edition, which is the RAGFlow Docker image without embedding models.
RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1-slim
#
# To download the RAGFlow Docker image with embedding models, uncomment the following line instead:
# RAGFLOW_IMAGE=infiniflow/ragflow:v0.14.1
#
# The Docker image of the v0.14.1 edition includes:
# - Built-in embedding models:
# - BAAI/bge-large-zh-v1.5
# - BAAI/bge-reranker-v2-m3
# - maidalun1020/bce-embedding-base_v1
# - maidalun1020/bce-reranker-base_v1
# - Embedding models that will be downloaded once you select them in the RAGFlow UI:
# - BAAI/bge-base-en-v1.5
# - BAAI/bge-large-en-v1.5
# - BAAI/bge-small-en-v1.5
# - BAAI/bge-small-zh-v1.5
# - jinaai/jina-embeddings-v2-base-en
# - jinaai/jina-embeddings-v2-small-en
# - nomic-ai/nomic-embed-text-v1.5
# - sentence-transformers/all-MiniLM-L6-v2
#
#
# If you cannot download the RAGFlow Docker image:
#
# - For the `nightly-slim` edition, uncomment either of the following:
# RAGFLOW_IMAGE=swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow:nightly-slim
# RAGFLOW_IMAGE=registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow:nightly-slim
#
# - For the `nightly` edition, uncomment either of the following:
# RAGFLOW_IMAGE=swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow:nightly
# RAGFLOW_IMAGE=registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow:nightly
# The local time zone.
TIMEZONE='Asia/Shanghai'
# Uncomment the following line if you have limited access to huggingface.co:
# HF_ENDPOINT=https://hf-mirror.com
# Optimizations for MacOS
# Uncomment the following line if your OS is MacOS:
# MACOS=1
# The maximum file size for each uploaded file, in bytes.
# You can uncomment this line and update the value if you wish to change the 128M file size limit
# MAX_CONTENT_LENGTH=134217728
# After making the change, ensure you update `client_max_body_size` in nginx/nginx.conf correspondingly.
# The log level for the RAGFlow's owned packages and imported packages.
# Available level:
# - `DEBUG`
# - `INFO` (default)
# - `WARNING`
# - `ERROR`
# For example, following line changes the log level of `ragflow.es_conn` to `DEBUG`:
# LOG_LEVELS=ragflow.es_conn=DEBUG
|