File size: 10,764 Bytes
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47ea26c
 
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
4d0b8a7
aeb6dbc
47ea26c
 
aeb6dbc
a3da325
47ea26c
4ba2b4f
 
47ea26c
4ba2b4f
 
a3da325
4ba2b4f
aeb6dbc
a3da325
aeb6dbc
 
 
 
 
563b0d7
aeb6dbc
 
 
 
 
4d0a7c7
aeb6dbc
 
 
 
 
 
 
 
 
 
f539fab
aeb6dbc
 
 
0404a52
 
 
 
a3da325
 
 
 
0404a52
aeb6dbc
0404a52
 
aeb6dbc
b08b226
0404a52
b08b226
 
 
 
0404a52
 
 
 
 
b08b226
0404a52
 
b08b226
563b0d7
aeb6dbc
47ea26c
 
 
 
 
 
 
 
 
 
 
 
a3da325
47ea26c
 
 
 
 
 
 
 
 
 
 
aeb6dbc
 
 
 
0404a52
 
 
 
a3da325
 
0404a52
 
 
 
a3da325
0404a52
 
 
 
a3da325
aeb6dbc
 
 
 
0404a52
aeb6dbc
0404a52
aeb6dbc
0404a52
 
 
 
 
 
 
 
 
 
 
 
 
 
aeb6dbc
 
 
 
47ea26c
 
 
aeb6dbc
 
 
 
 
 
47ea26c
4ba2b4f
47ea26c
aeb6dbc
 
0404a52
 
aeb6dbc
 
 
 
47ea26c
4ba2b4f
47ea26c
aeb6dbc
 
0404a52
 
aeb6dbc
 
0622917
aeb6dbc
b371a08
0404a52
aeb6dbc
 
 
4d0b8a7
aeb6dbc
 
 
 
 
0622917
a3da325
 
aeb6dbc
 
 
 
 
 
 
 
 
 
 
4d0b8a7
0622917
aeb6dbc
 
 
 
 
 
 
 
47ea26c
 
 
 
 
 
 
 
 
 
 
 
0129457
47ea26c
 
69ced1e
47ea26c
 
 
 
 
 
a3da325
 
0129457
47ea26c
aeb6dbc
 
 
47ea26c
aeb6dbc
0404a52
 
 
47ea26c
69ced1e
47ea26c
a3da325
 
47ea26c
69ced1e
47ea26c
 
69ced1e
47ea26c
 
758538f
 
 
 
 
47ea26c
69ced1e
a3da325
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import os
import random
import xxhash
import bisect

from api.db.db_utils import bulk_insert_into_db
from deepdoc.parser import PdfParser
from peewee import JOIN
from api.db.db_models import DB, File2Document, File
from api.db import StatusEnum, FileType, TaskStatus
from api.db.db_models import Task, Document, Knowledgebase, Tenant
from api.db.services.common_service import CommonService
from api.db.services.document_service import DocumentService
from api.utils import current_timestamp, get_uuid
from deepdoc.parser.excel_parser import RAGFlowExcelParser
from rag.settings import SVR_QUEUE_NAME
from rag.utils.storage_factory import STORAGE_IMPL
from rag.utils.redis_conn import REDIS_CONN
from api import settings
from rag.nlp import search


def trim_header_by_lines(text: str, max_length) -> str:
    len_text = len(text)
    if len_text <= max_length:
        return text
    for i in range(len_text):
        if text[i] == '\n' and len_text - i <= max_length:
            return text[i + 1:]
    return text


class TaskService(CommonService):
    model = Task

    @classmethod
    @DB.connection_context()
    def get_task(cls, task_id):
        fields = [
            cls.model.id,
            cls.model.doc_id,
            cls.model.from_page,
            cls.model.to_page,
            cls.model.retry_count,
            Document.kb_id,
            Document.parser_id,
            Document.parser_config,
            Document.name,
            Document.type,
            Document.location,
            Document.size,
            Knowledgebase.tenant_id,
            Knowledgebase.language,
            Knowledgebase.embd_id,
            Knowledgebase.pagerank,
            Tenant.img2txt_id,
            Tenant.asr_id,
            Tenant.llm_id,
            cls.model.update_time,
        ]
        docs = (
            cls.model.select(*fields)
                .join(Document, on=(cls.model.doc_id == Document.id))
                .join(Knowledgebase, on=(Document.kb_id == Knowledgebase.id))
                .join(Tenant, on=(Knowledgebase.tenant_id == Tenant.id))
                .where(cls.model.id == task_id)
        )
        docs = list(docs.dicts())
        if not docs:
            return None

        msg = "\nTask has been received."
        prog = random.random() / 10.0
        if docs[0]["retry_count"] >= 3:
            msg = "\nERROR: Task is abandoned after 3 times attempts."
            prog = -1

        cls.model.update(
            progress_msg=cls.model.progress_msg + msg,
            progress=prog,
            retry_count=docs[0]["retry_count"] + 1,
        ).where(cls.model.id == docs[0]["id"]).execute()

        if docs[0]["retry_count"] >= 3:
            return None

        return docs[0]

    @classmethod
    @DB.connection_context()
    def get_tasks(cls, doc_id: str):
        fields = [
            cls.model.id,
            cls.model.from_page,
            cls.model.progress,
            cls.model.digest,
            cls.model.chunk_ids,
        ]
        tasks = (
            cls.model.select(*fields).order_by(cls.model.from_page.asc(), cls.model.create_time.desc())
                .where(cls.model.doc_id == doc_id)
        )
        tasks = list(tasks.dicts())
        if not tasks:
            return None
        return tasks

    @classmethod
    @DB.connection_context()
    def update_chunk_ids(cls, id: str, chunk_ids: str):
        cls.model.update(chunk_ids=chunk_ids).where(cls.model.id == id).execute()

    @classmethod
    @DB.connection_context()
    def get_ongoing_doc_name(cls):
        with DB.lock("get_task", -1):
            docs = (
                cls.model.select(
                    *[Document.id, Document.kb_id, Document.location, File.parent_id]
                )
                    .join(Document, on=(cls.model.doc_id == Document.id))
                    .join(
                    File2Document,
                    on=(File2Document.document_id == Document.id),
                    join_type=JOIN.LEFT_OUTER,
                )
                    .join(
                    File,
                    on=(File2Document.file_id == File.id),
                    join_type=JOIN.LEFT_OUTER,
                )
                    .where(
                    Document.status == StatusEnum.VALID.value,
                    Document.run == TaskStatus.RUNNING.value,
                    ~(Document.type == FileType.VIRTUAL.value),
                    cls.model.progress < 1,
                    cls.model.create_time >= current_timestamp() - 1000 * 600,
                )
            )
            docs = list(docs.dicts())
            if not docs:
                return []

            return list(
                set(
                    [
                        (
                            d["parent_id"] if d["parent_id"] else d["kb_id"],
                            d["location"],
                        )
                        for d in docs
                    ]
                )
            )

    @classmethod
    @DB.connection_context()
    def do_cancel(cls, id):
        task = cls.model.get_by_id(id)
        _, doc = DocumentService.get_by_id(task.doc_id)
        return doc.run == TaskStatus.CANCEL.value or doc.progress < 0

    @classmethod
    @DB.connection_context()
    def update_progress(cls, id, info):
        if os.environ.get("MACOS"):
            if info["progress_msg"]:
                task = cls.model.get_by_id(id)
                progress_msg = trim_header_by_lines(task.progress_msg + "\n" + info["progress_msg"], 1000)
                cls.model.update(progress_msg=progress_msg).where(cls.model.id == id).execute()
            if "progress" in info:
                cls.model.update(progress=info["progress"]).where(
                    cls.model.id == id
                ).execute()
            return

        with DB.lock("update_progress", -1):
            if info["progress_msg"]:
                task = cls.model.get_by_id(id)
                progress_msg = trim_header_by_lines(task.progress_msg + "\n" + info["progress_msg"], 1000)
                cls.model.update(progress_msg=progress_msg).where(cls.model.id == id).execute()
            if "progress" in info:
                cls.model.update(progress=info["progress"]).where(
                    cls.model.id == id
                ).execute()


def queue_tasks(doc: dict, bucket: str, name: str):
    def new_task():
        return {"id": get_uuid(), "doc_id": doc["id"], "progress": 0.0, "from_page": 0, "to_page": 100000000}

    tsks = []

    if doc["type"] == FileType.PDF.value:
        file_bin = STORAGE_IMPL.get(bucket, name)
        do_layout = doc["parser_config"].get("layout_recognize", True)
        pages = PdfParser.total_page_number(doc["name"], file_bin)
        page_size = doc["parser_config"].get("task_page_size", 12)
        if doc["parser_id"] == "paper":
            page_size = doc["parser_config"].get("task_page_size", 22)
        if doc["parser_id"] in ["one", "knowledge_graph"] or not do_layout:
            page_size = 10 ** 9
        page_ranges = doc["parser_config"].get("pages") or [(1, 10 ** 5)]
        for s, e in page_ranges:
            s -= 1
            s = max(0, s)
            e = min(e - 1, pages)
            for p in range(s, e, page_size):
                task = new_task()
                task["from_page"] = p
                task["to_page"] = min(p + page_size, e)
                tsks.append(task)

    elif doc["parser_id"] == "table":
        file_bin = STORAGE_IMPL.get(bucket, name)
        rn = RAGFlowExcelParser.row_number(doc["name"], file_bin)
        for i in range(0, rn, 3000):
            task = new_task()
            task["from_page"] = i
            task["to_page"] = min(i + 3000, rn)
            tsks.append(task)
    else:
        tsks.append(new_task())

    chunking_config = DocumentService.get_chunking_config(doc["id"])
    for task in tsks:
        hasher = xxhash.xxh64()
        for field in sorted(chunking_config.keys()):
            hasher.update(str(chunking_config[field]).encode("utf-8"))
        for field in ["doc_id", "from_page", "to_page"]:
            hasher.update(str(task.get(field, "")).encode("utf-8"))
        task_digest = hasher.hexdigest()
        task["digest"] = task_digest
        task["progress"] = 0.0

    prev_tasks = TaskService.get_tasks(doc["id"])
    ck_num = 0
    if prev_tasks:
        for task in tsks:
            ck_num += reuse_prev_task_chunks(task, prev_tasks, chunking_config)
        TaskService.filter_delete([Task.doc_id == doc["id"]])
        chunk_ids = []
        for task in prev_tasks:
            if task["chunk_ids"]:
                chunk_ids.extend(task["chunk_ids"].split())
        if chunk_ids:
            settings.docStoreConn.delete({"id": chunk_ids}, search.index_name(chunking_config["tenant_id"]),
                                         chunking_config["kb_id"])
    DocumentService.update_by_id(doc["id"], {"chunk_num": ck_num})

    bulk_insert_into_db(Task, tsks, True)
    DocumentService.begin2parse(doc["id"])

    tsks = [task for task in tsks if task["progress"] < 1.0]
    for t in tsks:
        assert REDIS_CONN.queue_product(
            SVR_QUEUE_NAME, message=t
        ), "Can't access Redis. Please check the Redis' status."


def reuse_prev_task_chunks(task: dict, prev_tasks: list[dict], chunking_config: dict):
    idx = bisect.bisect_left(prev_tasks, (task.get("from_page", 0), task.get("digest", "")),
                             key=lambda x: (x.get("from_page", 0), x.get("digest", "")))
    if idx >= len(prev_tasks):
        return 0
    prev_task = prev_tasks[idx]
    if prev_task["progress"] < 1.0 or prev_task["digest"] != task["digest"] or not prev_task["chunk_ids"]:
        return 0
    task["chunk_ids"] = prev_task["chunk_ids"]
    task["progress"] = 1.0
    if "from_page" in task and "to_page" in task:
        task["progress_msg"] = f"Page({task['from_page']}~{task['to_page']}): "
    else:
        task["progress_msg"] = ""
    task["progress_msg"] += "reused previous task's chunks."
    prev_task["chunk_ids"] = ""

    return len(task["chunk_ids"].split())