File size: 3,779 Bytes
fa82d94 c2d189b 40a1db3 c2d189b 5b9e61c 40a1db3 c2d189b 252d77a c2d189b 40a1db3 9a8dfa4 fa82d94 c2d189b 40a1db3 c2d189b 9a8dfa4 c2d189b cd7d2b9 c2d189b cd7d2b9 c2d189b fa82d94 eae0334 fa82d94 c2d189b cd7d2b9 c2d189b cd7d2b9 c2d189b fa82d94 9a8dfa4 c2d189b cd7d2b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from .base import Base
from .session import Session
class Chat(Base):
def __init__(self, rag, res_dict):
self.id = ""
self.name = "assistant"
self.avatar = "path/to/avatar"
self.dataset_ids = ["kb1"]
self.llm = Chat.LLM(rag, {})
self.prompt = Chat.Prompt(rag, {})
super().__init__(rag, res_dict)
class LLM(Base):
def __init__(self, rag, res_dict):
self.model_name = "deepseek-chat"
self.temperature = 0.1
self.top_p = 0.3
self.presence_penalty = 0.4
self.frequency_penalty = 0.7
self.max_tokens = 512
super().__init__(rag, res_dict)
class Prompt(Base):
def __init__(self, rag, res_dict):
self.similarity_threshold = 0.2
self.keywords_similarity_weight = 0.7
self.top_n = 8
self.top_k = 1024
self.variables = [{"key": "knowledge", "optional": True}]
self.rerank_model = None
self.empty_response = None
self.opener = "Hi! I'm your assistant, what can I do for you?"
self.show_quote = True
self.prompt = (
"You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. "
"Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, "
"your answer must include the sentence 'The answer you are looking for is not found in the knowledge base!' "
"Answers need to consider chat history.\nHere is the knowledge base:\n{knowledge}\nThe above is the knowledge base."
)
super().__init__(rag, res_dict)
def update(self, update_message: dict):
res = self.put(f'/chats/{self.id}',
update_message)
res = res.json()
if res.get("code") != 0:
raise Exception(res["message"])
def create_session(self, name: str = "New session") -> Session:
res = self.post(f"/chats/{self.id}/sessions", {"name": name})
res = res.json()
if res.get("code") == 0:
return Session(self.rag, res['data'])
raise Exception(res["message"])
def list_sessions(self, page: int = 1, page_size: int = 30, orderby: str = "create_time", desc: bool = True,
id: str = None, name: str = None) -> list[Session]:
res = self.get(f'/chats/{self.id}/sessions',
{"page": page, "page_size": page_size, "orderby": orderby, "desc": desc, "id": id, "name": name})
res = res.json()
if res.get("code") == 0:
result_list = []
for data in res["data"]:
result_list.append(Session(self.rag, data))
return result_list
raise Exception(res["message"])
def delete_sessions(self, ids: list[str] | None = None):
res = self.rm(f"/chats/{self.id}/sessions", {"ids": ids})
res = res.json()
if res.get("code") != 0:
raise Exception(res.get("message"))
|