File size: 9,654 Bytes
fa82d94 aeb6dbc fa82d94 aeb6dbc 0129457 aeb6dbc 0129457 aeb6dbc 0404a52 aeb6dbc b07ff91 aeb6dbc 0404a52 aeb6dbc 0129457 b57c1d6 0129457 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import re
from collections import Counter
from copy import deepcopy
import cv2
import numpy as np
from huggingface_hub import snapshot_download
from api.utils.file_utils import get_project_base_directory
from deepdoc.vision import Recognizer
from deepdoc.vision.operators import nms
class LayoutRecognizer(Recognizer):
labels = [
"_background_",
"Text",
"Title",
"Figure",
"Figure caption",
"Table",
"Table caption",
"Header",
"Footer",
"Reference",
"Equation",
]
def __init__(self, domain):
try:
model_dir = os.path.join(
get_project_base_directory(),
"rag/res/deepdoc")
super().__init__(self.labels, domain, model_dir)
except Exception:
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc",
local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
local_dir_use_symlinks=False)
super().__init__(self.labels, domain, model_dir)
self.garbage_layouts = ["footer", "header", "reference"]
def __call__(self, image_list, ocr_res, scale_factor=3,
thr=0.2, batch_size=16, drop=True):
def __is_garbage(b):
patt = [r"^•+$", r"(版权归©|免责条款|地址[::])", r"\.{3,}", "^[0-9]{1,2} / ?[0-9]{1,2}$",
r"^[0-9]{1,2} of [0-9]{1,2}$", "^http://[^ ]{12,}",
"(资料|数据)来源[::]", "[0-9a-z._-]+@[a-z0-9-]+\\.[a-z]{2,3}",
"\\(cid *: *[0-9]+ *\\)"
]
return any([re.search(p, b["text"]) for p in patt])
layouts = super().__call__(image_list, thr, batch_size)
# save_results(image_list, layouts, self.labels, output_dir='output/', threshold=0.7)
assert len(image_list) == len(ocr_res)
# Tag layout type
boxes = []
assert len(image_list) == len(layouts)
garbages = {}
page_layout = []
for pn, lts in enumerate(layouts):
bxs = ocr_res[pn]
lts = [{"type": b["type"],
"score": float(b["score"]),
"x0": b["bbox"][0] / scale_factor, "x1": b["bbox"][2] / scale_factor,
"top": b["bbox"][1] / scale_factor, "bottom": b["bbox"][-1] / scale_factor,
"page_number": pn,
} for b in lts if float(b["score"]) >= 0.4 or b["type"] not in self.garbage_layouts]
lts = self.sort_Y_firstly(lts, np.mean(
[lt["bottom"] - lt["top"] for lt in lts]) / 2)
lts = self.layouts_cleanup(bxs, lts)
page_layout.append(lts)
# Tag layout type, layouts are ready
def findLayout(ty):
nonlocal bxs, lts, self
lts_ = [lt for lt in lts if lt["type"] == ty]
i = 0
while i < len(bxs):
if bxs[i].get("layout_type"):
i += 1
continue
if __is_garbage(bxs[i]):
bxs.pop(i)
continue
ii = self.find_overlapped_with_threashold(bxs[i], lts_,
thr=0.4)
if ii is None: # belong to nothing
bxs[i]["layout_type"] = ""
i += 1
continue
lts_[ii]["visited"] = True
keep_feats = [
lts_[
ii]["type"] == "footer" and bxs[i]["bottom"] < image_list[pn].size[1] * 0.9 / scale_factor,
lts_[
ii]["type"] == "header" and bxs[i]["top"] > image_list[pn].size[1] * 0.1 / scale_factor,
]
if drop and lts_[
ii]["type"] in self.garbage_layouts and not any(keep_feats):
if lts_[ii]["type"] not in garbages:
garbages[lts_[ii]["type"]] = []
garbages[lts_[ii]["type"]].append(bxs[i]["text"])
bxs.pop(i)
continue
bxs[i]["layoutno"] = f"{ty}-{ii}"
bxs[i]["layout_type"] = lts_[ii]["type"] if lts_[
ii]["type"] != "equation" else "figure"
i += 1
for lt in ["footer", "header", "reference", "figure caption",
"table caption", "title", "table", "text", "figure", "equation"]:
findLayout(lt)
# add box to figure layouts which has not text box
for i, lt in enumerate(
[lt for lt in lts if lt["type"] in ["figure", "equation"]]):
if lt.get("visited"):
continue
lt = deepcopy(lt)
del lt["type"]
lt["text"] = ""
lt["layout_type"] = "figure"
lt["layoutno"] = f"figure-{i}"
bxs.append(lt)
boxes.extend(bxs)
ocr_res = boxes
garbag_set = set()
for k in garbages.keys():
garbages[k] = Counter(garbages[k])
for g, c in garbages[k].items():
if c > 1:
garbag_set.add(g)
ocr_res = [b for b in ocr_res if b["text"].strip() not in garbag_set]
return ocr_res, page_layout
def forward(self, image_list, thr=0.7, batch_size=16):
return super().__call__(image_list, thr, batch_size)
class LayoutRecognizer4YOLOv10(LayoutRecognizer):
labels = [
"title",
"Text",
"Reference",
"Figure",
"Figure caption",
"Table",
"Table caption",
"Table caption",
"Equation",
"Figure caption",
]
def __init__(self, domain):
domain = "layout"
super().__init__(domain)
self.auto = False
self.scaleFill = False
self.scaleup = True
self.stride = 32
self.center = True
def preprocess(self, image_list):
inputs = []
new_shape = self.input_shape # height, width
for img in image_list:
shape = img.shape[:2]# current shape [height, width]
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
# Compute padding
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
dw /= 2 # divide padding into 2 sides
dh /= 2
ww, hh = new_unpad
img = np.array(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)).astype(np.float32)
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)) if self.center else 0, int(round(dh + 0.1))
left, right = int(round(dw - 0.1)) if self.center else 0, int(round(dw + 0.1))
img = cv2.copyMakeBorder(
img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114)
) # add border
img /= 255.0
img = img.transpose(2, 0, 1)
img = img[np.newaxis, :, :, :].astype(np.float32)
inputs.append({self.input_names[0]: img, "scale_factor": [shape[1]/ww, shape[0]/hh, dw, dh]})
return inputs
def postprocess(self, boxes, inputs, thr):
thr = 0.08
boxes = np.squeeze(boxes)
scores = boxes[:, 4]
boxes = boxes[scores > thr, :]
scores = scores[scores > thr]
if len(boxes) == 0:
return []
class_ids = boxes[:, -1].astype(int)
boxes = boxes[:, :4]
boxes[:, 0] -= inputs["scale_factor"][2]
boxes[:, 2] -= inputs["scale_factor"][2]
boxes[:, 1] -= inputs["scale_factor"][3]
boxes[:, 3] -= inputs["scale_factor"][3]
input_shape = np.array([inputs["scale_factor"][0], inputs["scale_factor"][1], inputs["scale_factor"][0],
inputs["scale_factor"][1]])
boxes = np.multiply(boxes, input_shape, dtype=np.float32)
unique_class_ids = np.unique(class_ids)
indices = []
for class_id in unique_class_ids:
class_indices = np.where(class_ids == class_id)[0]
class_boxes = boxes[class_indices, :]
class_scores = scores[class_indices]
class_keep_boxes = nms(class_boxes, class_scores, 0.45)
indices.extend(class_indices[class_keep_boxes])
return [{
"type": self.label_list[class_ids[i]].lower(),
"bbox": [float(t) for t in boxes[i].tolist()],
"score": float(scores[i])
} for i in indices]
|