File size: 16,036 Bytes
cdba7f7
 
 
 
 
 
 
 
 
 
 
 
f4456af
 
 
 
1eb186a
f4456af
 
 
 
 
 
 
 
e32ef75
 
 
 
 
f4456af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
738c322
f4456af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
738c322
f4456af
 
 
 
 
 
 
 
 
 
 
249b27c
 
 
 
 
e32ef75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
249b27c
 
d0db329
 
 
e32ef75
249b27c
e32ef75
249b27c
e32ef75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
249b27c
e32ef75
249b27c
 
 
 
 
 
 
 
 
 
 
 
 
1eb186a
 
 
3245107
 
d0db329
 
1eb186a
 
 
 
 
249b27c
 
d0db329
 
3198faf
 
 
 
 
 
249b27c
 
 
 
f4456af
 
 
 
cdba7f7
f4456af
 
cdba7f7
f4456af
 
cdba7f7
f4456af
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import re
import os
import copy
import base64
import magic
from dataclasses import dataclass
from typing import List
import numpy as np
from io import BytesIO


class HuChunker:

    @dataclass
    class Fields:
        text_chunks: List = None
        table_chunks: List = None

    def __init__(self):
        self.MAX_LVL = 12
        self.proj_patt = [
            (r"第[零一二三四五六七八九十百]+章", 1),
            (r"第[零一二三四五六七八九十百]+[条节]", 2),
            (r"[零一二三四五六七八九十百]+[、  ]", 3),
            (r"[\((][零一二三四五六七八九十百]+[)\)]", 4),
            (r"[0-9]+(、|\.[  ]|\.[^0-9])", 5),
            (r"[0-9]+\.[0-9]+(、|[  ]|[^0-9])", 6),
            (r"[0-9]+\.[0-9]+\.[0-9]+(、|[  ]|[^0-9])", 7),
            (r"[0-9]+\.[0-9]+\.[0-9]+\.[0-9]+(、|[  ]|[^0-9])", 8),
            (r".{,48}[::??]@", 9),
            (r"[0-9]+)", 10),
            (r"[\((][0-9]+[)\)]", 11),
            (r"[零一二三四五六七八九十百]+是", 12),
            (r"[⚫•➢✓ ]", 12)
        ]
        self.lines = []

    def _garbage(self, txt):
        patt = [
            r"(在此保证|不得以任何形式翻版|请勿传阅|仅供内部使用|未经事先书面授权)",
            r"(版权(归本公司)*所有|免责声明|保留一切权力|承担全部责任|特别声明|报告中涉及)",
            r"(不承担任何责任|投资者的通知事项:|任何机构和个人|本报告仅为|不构成投资)",
            r"(不构成对任何个人或机构投资建议|联系其所在国家|本报告由从事证券交易)",
            r"(本研究报告由|「认可投资者」|所有研究报告均以|请发邮件至)",
            r"(本报告仅供|市场有风险,投资需谨慎|本报告中提及的)",
            r"(本报告反映|此信息仅供|证券分析师承诺|具备证券投资咨询业务资格)",
            r"^(时间|签字|签章)[::]",
            r"(参考文献|目录索引|图表索引)",
            r"[ ]*年[ ]+月[ ]+日",
            r"^(中国证券业协会|[0-9]+年[0-9]+月[0-9]+日)$",
            r"\.{10,}",
            r"(———————END|帮我转发|欢迎收藏|快来关注我吧)"
        ]
        return any([re.search(p, txt) for p in patt])

    def _proj_match(self, line):
        for p, j in self.proj_patt:
            if re.match(p, line):
                return j
        return

    def _does_proj_match(self):
        mat = [None for _ in range(len(self.lines))]
        for i in range(len(self.lines)):
            mat[i] = self._proj_match(self.lines[i])
        return mat

    def naive_text_chunk(self, text, ti="", MAX_LEN=612):
        if text:
            self.lines = [l.strip().replace(u'\u3000', u' ')
                          .replace(u'\xa0', u'')
                          for l in text.split("\n\n")]
            self.lines = [l for l in self.lines if not self._garbage(l)]
            self.lines = [re.sub(r"([ ]+| )", " ", l)
                          for l in self.lines if l]
        if not self.lines:
            return []
        arr = self.lines

        res = [""]
        i = 0
        while i < len(arr):
            a = arr[i]
            if not a:
                i += 1
                continue
            if len(a) > MAX_LEN:
                a_ = a.split("\n")
                if len(a_) >= 2:
                    arr.pop(i)
                    for j in range(2, len(a_) + 1):
                        if len("\n".join(a_[:j])) >= MAX_LEN:
                            arr.insert(i, "\n".join(a_[:j - 1]))
                            arr.insert(i + 1, "\n".join(a_[j - 1:]))
                            break
                    else:
                        assert False, f"Can't split: {a}"
                    continue

            if len(res[-1]) < MAX_LEN / 3:
                res[-1] += "\n" + a
            else:
                res.append(a)
            i += 1

        if ti:
            for i in range(len(res)):
                if res[i].find("——来自") >= 0:
                    continue
                res[i] += f"\t——来自“{ti}”"

        return res

    def _merge(self):
        # merge continuous same level text
        lines = [self.lines[0]] if self.lines else []
        for i in range(1, len(self.lines)):
            if self.mat[i] == self.mat[i - 1] \
               and len(lines[-1]) < 256 \
               and len(self.lines[i]) < 256:
                lines[-1] += "\n" + self.lines[i]
                continue
            lines.append(self.lines[i])
        self.lines = lines
        self.mat = self._does_proj_match()
        return self.mat

    def text_chunks(self, text):
        if text:
            self.lines = [l.strip().replace(u'\u3000', u' ')
                          .replace(u'\xa0', u'')
                          for l in re.split(r"[\r\n]", text)]
            self.lines = [l for l in self.lines if not self._garbage(l)]
            self.lines = [l for l in self.lines if l]
        self.mat = self._does_proj_match()
        mat = self._merge()

        tree = []
        for i in range(len(self.lines)):
            tree.append({"proj": mat[i],
                         "children": [],
                         "read": False})
        # find all children
        for i in range(len(self.lines) - 1):
            if tree[i]["proj"] is None:
                continue
            ed = i + 1
            while ed < len(tree) and (tree[ed]["proj"] is None or
                                      tree[ed]["proj"] > tree[i]["proj"]):
                ed += 1

            nxt = tree[i]["proj"] + 1
            st = set([p["proj"] for p in tree[i + 1: ed] if p["proj"]])
            while nxt not in st:
                nxt += 1
                if nxt > self.MAX_LVL:
                    break
            if nxt <= self.MAX_LVL:
                for j in range(i + 1, ed):
                    if tree[j]["proj"] is not None:
                        break
                    tree[i]["children"].append(j)
                for j in range(i + 1, ed):
                    if tree[j]["proj"] != nxt:
                        continue
                    tree[i]["children"].append(j)
            else:
                for j in range(i + 1, ed):
                    tree[i]["children"].append(j)

        # get DFS combinations, find all the paths to leaf
        paths = []

        def dfs(i, path):
            nonlocal tree, paths
            path.append(i)
            tree[i]["read"] = True
            if len(self.lines[i]) > 256:
                paths.append(path)
                return
            if not tree[i]["children"]:
                if len(path) > 1 or len(self.lines[i]) >= 32:
                    paths.append(path)
                return
            for j in tree[i]["children"]:
                dfs(j, copy.deepcopy(path))

        for i, t in enumerate(tree):
            if t["read"]:
                continue
            dfs(i, [])

        # concat txt on the path for all paths
        res = []
        lines = np.array(self.lines)
        for p in paths:
            if len(p) < 2:
                tree[p[0]]["read"] = False
                continue
            txt = "\n".join(lines[p[:-1]]) + "\n" + lines[p[-1]]
            res.append(txt)
        # concat continuous orphans
        assert len(tree) == len(lines)
        ii = 0
        while ii < len(tree):
            if tree[ii]["read"]:
                ii += 1
                continue
            txt = lines[ii]
            e = ii + 1
            while e < len(tree) and not tree[e]["read"] and len(txt) < 256:
                txt += "\n" + lines[e]
                e += 1
            res.append(txt)
            ii = e

        # if the node has not been read, find its daddy
        def find_daddy(st):
            nonlocal lines, tree
            proj = tree[st]["proj"]
            if len(self.lines[st]) > 512:
                return [st]
            if proj is None:
                proj = self.MAX_LVL + 1
            for i in range(st - 1, -1, -1):
                if tree[i]["proj"] and tree[i]["proj"] < proj:
                    a = [st] + find_daddy(i)
                    return a
            return []

        return res


class PdfChunker(HuChunker):

    def __init__(self, pdf_parser):
        self.pdf = pdf_parser
        super().__init__()

    def tableHtmls(self, pdfnm):
        _, tbls = self.pdf(pdfnm, return_html=True)
        res = []
        for img, arr in tbls:
            if arr[0].find("<table>") < 0:
                continue
            buffered = BytesIO()
            if img:
                img.save(buffered, format="JPEG")
            img_str = base64.b64encode(
                buffered.getvalue()).decode('utf-8') if img else ""
            res.append({"table": arr[0], "image": img_str})
        return res

    def html(self, pdfnm):
        txts, tbls = self.pdf(pdfnm, return_html=True)
        res = []
        txt_cks = self.text_chunks(txts)
        for txt, img in [(self.pdf.remove_tag(c), self.pdf.crop(c))
                         for c in txt_cks]:
            buffered = BytesIO()
            if img:
                img.save(buffered, format="JPEG")
            img_str = base64.b64encode(
                buffered.getvalue()).decode('utf-8') if img else ""
            res.append({"table": "<p>%s</p>" % txt.replace("\n", "<br/>"),
                        "image": img_str})

        for img, arr in tbls:
            if not arr:
                continue
            buffered = BytesIO()
            if img:
                img.save(buffered, format="JPEG")
            img_str = base64.b64encode(
                buffered.getvalue()).decode('utf-8') if img else ""
            res.append({"table": arr[0], "image": img_str})

        return res

    def __call__(self, pdfnm, return_image=True, naive_chunk=False):
        flds = self.Fields()
        text, tbls = self.pdf(pdfnm)
        fnm = pdfnm
        txt_cks = self.text_chunks(text) if not naive_chunk else \
            self.naive_text_chunk(text, ti=fnm if isinstance(fnm, str) else "")
        flds.text_chunks = [(self.pdf.remove_tag(c),
                             self.pdf.crop(c) if return_image else None) for c in txt_cks]

        flds.table_chunks = [(arr, img if return_image else None)
                             for img, arr in tbls]
        return flds


class DocxChunker(HuChunker):

    def __init__(self, doc_parser):
        self.doc = doc_parser
        super().__init__()

    def _does_proj_match(self):
        mat = []
        for s in self.styles:
            s = s.split(" ")[-1]
            try:
                mat.append(int(s))
            except Exception as e:
                mat.append(None)
        return mat

    def _merge(self):
        i = 1
        while i < len(self.lines):
            if self.mat[i] == self.mat[i - 1] \
               and len(self.lines[i - 1]) < 256 \
               and len(self.lines[i]) < 256:
                self.lines[i - 1] += "\n" + self.lines[i]
                self.styles.pop(i)
                self.lines.pop(i)
                self.mat.pop(i)
                continue
            i += 1
        self.mat = self._does_proj_match()
        return self.mat

    def __call__(self, fnm):
        flds = self.Fields()
        flds.title = os.path.splitext(
            os.path.basename(fnm))[0] if isinstance(
            fnm, type("")) else ""
        secs, tbls = self.doc(fnm)
        self.lines = [l for l, s in secs]
        self.styles = [s for l, s in secs]

        txt_cks = self.text_chunks("")
        flds.text_chunks = [(t, None) for t in txt_cks if not self._garbage(t)]
        flds.table_chunks = [(tb, None) for tb in tbls for t in tb if t]
        return flds


class ExcelChunker(HuChunker):

    def __init__(self, excel_parser):
        self.excel = excel_parser
        super().__init__()

    def __call__(self, fnm):
        flds = self.Fields()
        flds.text_chunks = [(t, None) for t in self.excel(fnm)]
        flds.table_chunks = []
        return flds


class PptChunker(HuChunker):

    def __init__(self):
        super().__init__()

    def __extract(self, shape):
        if shape.shape_type == 19:
            tb = shape.table
            rows = []
            for i in range(1, len(tb.rows)):
                rows.append("; ".join([tb.cell(0, j).text + ": " + tb.cell(i, j).text for j in range(len(tb.columns)) if tb.cell(i, j)]))
            return "\n".join(rows)

        if shape.has_text_frame:
            return shape.text_frame.text

        if shape.shape_type == 6:
            texts = []
            for p in shape.shapes:
                t = self.__extract(p)
                if t: texts.append(t)
            return "\n".join(texts)

    def __call__(self, fnm):
        from pptx import Presentation
        ppt = Presentation(fnm) if isinstance(
            fnm, str) else Presentation(
            BytesIO(fnm))
        txts = []
        for slide in ppt.slides:
            texts = []
            for shape in slide.shapes:
                txt = self.__extract(shape)
                if txt: texts.append(txt)
            txts.append("\n".join(texts))

        import aspose.slides as slides
        import aspose.pydrawing as drawing
        imgs = []
        with slides.Presentation(BytesIO(fnm)) as presentation:
            for slide in presentation.slides:
                buffered = BytesIO()
                slide.get_thumbnail(0.5, 0.5).save(buffered, drawing.imaging.ImageFormat.jpeg)
                imgs.append(buffered.getvalue())
        assert len(imgs) == len(txts), "Slides text and image do not match: {} vs. {}".format(len(imgs), len(txts))

        flds = self.Fields()
        flds.text_chunks = [(txts[i], imgs[i]) for i in range(len(txts))]
        flds.table_chunks = []

        return flds


class TextChunker(HuChunker):

    @dataclass
    class Fields:
        text_chunks: List = None
        table_chunks: List = None

    def __init__(self):
        super().__init__()

    @staticmethod
    def is_binary_file(file_path):
        mime = magic.Magic(mime=True)
        if isinstance(file_path, str):
            file_type = mime.from_file(file_path)
        else:
            file_type = mime.from_buffer(file_path)
        if 'text' in file_type:
            return False
        else:
            return True

    def __call__(self, fnm):
        flds = self.Fields()
        if self.is_binary_file(fnm):
            return flds
        txt = ""
        if isinstance(fnm, str):
            with open(fnm, "r") as f:
                txt = f.read()
        else: txt = fnm.decode("utf-8")
        flds.text_chunks = [(c, None) for c in self.naive_text_chunk(txt)]
        flds.table_chunks = []
        return flds


if __name__ == "__main__":
    import sys
    sys.path.append(os.path.dirname(__file__) + "/../")
    if sys.argv[1].split(".")[-1].lower() == "pdf":
        from deepdoc.parser import PdfParser
        ckr = PdfChunker(PdfParser())
    if sys.argv[1].split(".")[-1].lower().find("doc") >= 0:
        from deepdoc.parser import DocxParser
        ckr = DocxChunker(DocxParser())
    if sys.argv[1].split(".")[-1].lower().find("xlsx") >= 0:
        from deepdoc.parser import ExcelParser
        ckr = ExcelChunker(ExcelParser())

    # ckr.html(sys.argv[1])
    print(ckr(sys.argv[1]))