File size: 4,627 Bytes
6054f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b691127
6054f54
 
 
 
 
6807fac
eae0334
b691127
 
 
 
 
6054f54
b691127
 
 
6054f54
b691127
6054f54
b691127
 
 
 
 
 
 
 
 
 
 
 
 
 
6054f54
b691127
 
 
 
 
6054f54
be98b1d
bcf5fd5
 
6054f54
 
b691127
6054f54
b691127
 
e2bbb9d
b691127
 
 
 
6054f54
 
b691127
 
 
 
 
 
 
 
6054f54
 
b691127
 
 
 
 
 
 
 
6054f54
 
 
 
 
 
b691127
6054f54
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import json
from copy import deepcopy

import pandas as pd
from rag.utils.doc_store_conn import OrderByExpr, FusionExpr

from rag.nlp.search import Dealer


class KGSearch(Dealer):
    def search(self, req, idxnm: str | list[str], kb_ids: list[str], emb_mdl=None, highlight=False):
        def merge_into_first(sres, title="") -> dict[str, str]:
            if not sres:
                return {}
            content_with_weight = ""
            df, texts = [],[]
            for d in sres.values():
                try:
                    df.append(json.loads(d["content_with_weight"]))
                except Exception:
                    texts.append(d["content_with_weight"])
            if df:
                content_with_weight = title + "\n" + pd.DataFrame(df).to_csv()
            else:
                content_with_weight = title + "\n" + "\n".join(texts)
            first_id = ""
            first_source = {}
            for k, v in sres.items():
                first_id = id
                first_source = deepcopy(v)
                break
            first_source["content_with_weight"] = content_with_weight
            first_id = next(iter(sres))
            return {first_id: first_source}

        qst = req.get("question", "")
        matchText, keywords = self.qryr.question(qst, min_match=0.05)
        condition = self.get_filters(req)

        ## Entity retrieval
        condition.update({"knowledge_graph_kwd": ["entity"]})
        assert emb_mdl, "No embedding model selected"
        matchDense = self.get_vector(qst, emb_mdl, 1024, req.get("similarity", 0.1))
        q_vec = matchDense.embedding_data
        src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id", "img_id", "title_tks", "important_kwd",
                                 "doc_id", f"q_{len(q_vec)}_vec", "position_int", "name_kwd",
                                 "available_int", "content_with_weight",
                                 "weight_int", "weight_flt"
                                 ])

        fusionExpr = FusionExpr("weighted_sum", 32, {"weights": "0.5, 0.5"})

        ent_res = self.dataStore.search(src, list(), condition, [matchText, matchDense, fusionExpr], OrderByExpr(), 0, 32, idxnm, kb_ids)
        ent_res_fields = self.dataStore.getFields(ent_res, src)
        entities = [d["name_kwd"] for d in ent_res_fields.values() if d.get("name_kwd")]
        ent_ids = self.dataStore.getChunkIds(ent_res)
        ent_content = merge_into_first(ent_res_fields, "-Entities-")
        if ent_content:
            ent_ids = list(ent_content.keys())

        ## Community retrieval
        condition = self.get_filters(req)
        condition.update({"entities_kwd": entities, "knowledge_graph_kwd": ["community_report"]})
        comm_res = self.dataStore.search(src, list(), condition, [matchText, matchDense, fusionExpr], OrderByExpr(), 0, 32, idxnm, kb_ids)
        comm_res_fields = self.dataStore.getFields(comm_res, src)
        comm_ids = self.dataStore.getChunkIds(comm_res)
        comm_content = merge_into_first(comm_res_fields, "-Community Report-")
        if comm_content:
            comm_ids = list(comm_content.keys())

        ## Text content retrieval
        condition = self.get_filters(req)
        condition.update({"knowledge_graph_kwd": ["text"]})
        txt_res = self.dataStore.search(src, list(), condition, [matchText, matchDense, fusionExpr], OrderByExpr(), 0, 6, idxnm, kb_ids)
        txt_res_fields = self.dataStore.getFields(txt_res, src)
        txt_ids = self.dataStore.getChunkIds(txt_res)
        txt_content = merge_into_first(txt_res_fields, "-Original Content-")
        if txt_content:
            txt_ids = list(txt_content.keys())

        return self.SearchResult(
            total=len(ent_ids) + len(comm_ids) + len(txt_ids),
            ids=[*ent_ids, *comm_ids, *txt_ids],
            query_vector=q_vec,
            highlight=None,
            field={**ent_content, **comm_content, **txt_content},
            keywords=[]
        )