File size: 6,216 Bytes
3079197
 
f4456af
0e1a16c
f4456af
 
 
08bab63
 
3079197
f4456af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89444d3
f4456af
 
 
08bab63
 
 
 
 
 
 
 
f4456af
 
 
484e5ab
f4456af
 
 
 
 
 
 
08bab63
328b4c9
f4456af
7d85666
f4456af
 
 
 
08bab63
7d85666
08bab63
f4456af
 
 
 
 
 
 
 
 
429cc62
f4456af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
328b4c9
f4456af
 
 
 
 
 
 
 
 
 
79ada0b
 
f4456af
 
 
 
 
 
 
 
 
79ada0b
f4456af
 
79ada0b
08bab63
79ada0b
08bab63
0e1a16c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# -*- coding: utf-8 -*-

import json
import math
import re
import logging
import copy
from elasticsearch_dsl import Q

from rag.nlp import huqie, term_weight, synonym


class EsQueryer:
    def __init__(self, es):
        self.tw = term_weight.Dealer()
        self.es = es
        self.syn = synonym.Dealer(None)
        self.flds = ["ask_tks^10", "ask_small_tks"]

    @staticmethod
    def subSpecialChar(line):
        return re.sub(r"([:\{\}/\[\]\-\*\"\(\)\|~\^])", r"\\\1", line).strip()

    @staticmethod
    def isChinese(line):
        arr = re.split(r"[ \t]+", line)
        if len(arr) <= 3:
            return True
        e = 0
        for t in arr:
            if not re.match(r"[a-zA-Z]+$", t):
                e += 1
        return e * 1. / len(arr) >= 0.7

    @staticmethod
    def rmWWW(txt):
        patts = [
            (r"是*(什么样的|哪家|那家|啥样|咋样了|什么时候|何时|何地|何人|是否|是不是|多少|哪里|怎么|哪儿|怎么样|如何|哪些|是啥|啥是|啊|吗|呢|吧|咋|什么|有没有|呀)是*", ""),
            (r"(^| )(what|who|how|which|where|why)('re|'s)? ", " "),
            (r"(^| )('s|'re|is|are|were|was|do|does|did|don't|doesn't|didn't|has|have|be|there|you|me|your|my|mine|just|please|may|i|should|would|wouldn't|will|won't|done|go|for|with|so|the|a|an|by|i'm|it's|he's|she's|they|they're|you're|as|by|on|in|at|up|out|down)", " ")
        ]
        for r, p in patts:
            txt = re.sub(r, p, txt, flags=re.IGNORECASE)
        return txt

    def question(self, txt, tbl="qa", min_match="60%"):
        txt = re.sub(
            r"[ \r\n\t,,。??/`!!&]+",
            " ",
            huqie.tradi2simp(
                huqie.strQ2B(
                    txt.lower()))).strip()
        txt = EsQueryer.rmWWW(txt)

        if not self.isChinese(txt):
            tks = huqie.qie(txt).split(" ")
            q = copy.deepcopy(tks)
            for i in range(1, len(tks)):
                q.append("\"%s %s\"^2" % (tks[i - 1], tks[i]))
            if not q:
                q.append(txt)
            return Q("bool",
                     must=Q("query_string", fields=self.flds,
                            type="best_fields", query=" ".join(q),
                            boost=1, minimum_should_match=min_match)
                     ), tks

        def needQieqie(tk):
            if len(tk) < 4:
                return False
            if re.match(r"[0-9a-z\.\+#_\*-]+$", tk):
                return False
            return True

        qs, keywords = [], []
        for tt in self.tw.split(txt)[:256]:  # .split(" "):
            if not tt:
                continue
            twts = self.tw.weights([tt])
            syns = self.syn.lookup(tt)
            logging.info(json.dumps(twts, ensure_ascii=False))
            tms = []
            for tk, w in sorted(twts, key=lambda x: x[1] * -1):
                sm = huqie.qieqie(tk).split(" ") if needQieqie(tk) else []
                sm = [
                    re.sub(
                        r"[ ,\./;'\[\]\\`~!@#$%\^&\*\(\)=\+_<>\?:\"\{\}\|,。;‘’【】、!¥……()——《》?:“”-]+",
                        "",
                        m) for m in sm]
                sm = [EsQueryer.subSpecialChar(m) for m in sm if len(m) > 1]
                sm = [m for m in sm if len(m) > 1]
                if len(sm) < 2:
                    sm = []

                keywords.append(re.sub(r"[ \\\"']+", "", tk))

                tk_syns = self.syn.lookup(tk)
                tk = EsQueryer.subSpecialChar(tk)
                if tk.find(" ") > 0:
                    tk = "\"%s\"" % tk
                if tk_syns:
                    tk = f"({tk} %s)" % " ".join(tk_syns)
                if sm:
                    tk = f"{tk} OR \"%s\" OR (\"%s\"~2)^0.5" % (
                        " ".join(sm), " ".join(sm))
                tms.append((tk, w))

            tms = " ".join([f"({t})^{w}" for t, w in tms])

            if len(twts) > 1:
                tms += f" (\"%s\"~4)^1.5" % (" ".join([t for t, _ in twts]))
            if re.match(r"[0-9a-z ]+$", tt):
                tms = f"(\"{tt}\" OR \"%s\")" % huqie.qie(tt)

            syns = " OR ".join(
                ["\"%s\"^0.7" % EsQueryer.subSpecialChar(huqie.qie(s)) for s in syns])
            if syns:
                tms = f"({tms})^5 OR ({syns})^0.7"

            qs.append(tms)

        flds = copy.deepcopy(self.flds)
        mst = []
        if qs:
            mst.append(
                Q("query_string", fields=flds, type="best_fields",
                  query=" OR ".join([f"({t})" for t in qs if t]), boost=1, minimum_should_match=min_match)
            )

        return Q("bool",
                 must=mst,
                 ), keywords

    def hybrid_similarity(self, avec, bvecs, atks, btkss, tkweight=0.3,
                          vtweight=0.7):
        from sklearn.metrics.pairwise import cosine_similarity as CosineSimilarity
        import numpy as np
        sims = CosineSimilarity([avec], bvecs)

        def toDict(tks):
            d = {}
            if isinstance(tks, str):
                tks = tks.split(" ")
            for t, c in self.tw.weights(tks):
                if t not in d:
                    d[t] = 0
                d[t] += c
            return d

        atks = toDict(atks)
        btkss = [toDict(tks) for tks in btkss]
        tksim = [self.similarity(atks, btks) for btks in btkss]
        return np.array(sims[0]) * vtweight + \
            np.array(tksim) * tkweight, tksim, sims[0]

    def similarity(self, qtwt, dtwt):
        if isinstance(dtwt, type("")):
            dtwt = {t: w for t, w in self.tw.weights(self.tw.split(dtwt))}
        if isinstance(qtwt, type("")):
            qtwt = {t: w for t, w in self.tw.weights(self.tw.split(qtwt))}
        s = 1e-9
        for k, v in qtwt.items():
            if k in dtwt:
                s += v  # * dtwt[k]
        q = 1e-9
        for k, v in qtwt.items():
            q += v  # * v
        #d = 1e-9
        # for k, v in dtwt.items():
        #    d += v * v
        return s / q / max(1, math.sqrt(math.log10(max(len(qtwt.keys()), len(dtwt.keys())))))# math.sqrt(q) / math.sqrt(d)