File size: 6,330 Bytes
cdba7f7
 
 
 
 
 
 
 
 
 
 
 
e6acaf6
ee82924
e6acaf6
b085dec
 
41c7a59
d54aa01
 
cfd6ece
858916d
e6acaf6
 
cdba7f7
e6acaf6
 
54ec234
e6acaf6
 
 
 
b83edb4
 
279ca43
e6acaf6
 
 
cdba7f7
b83edb4
3cefaa0
e6acaf6
 
 
b83edb4
 
e6acaf6
 
 
 
 
 
79ada0b
 
e6acaf6
 
79ada0b
 
a8294f2
 
 
 
 
e6acaf6
 
cfd6ece
e6acaf6
cfd6ece
e6acaf6
79ada0b
ae35e13
e6acaf6
cdba7f7
e6acaf6
79ada0b
 
 
 
977d825
e6acaf6
b085dec
e6acaf6
79ada0b
 
 
64a0633
79ada0b
b085dec
e6acaf6
 
 
79ada0b
d54aa01
b5b25b4
e6acaf6
 
 
 
79ada0b
 
e6acaf6
407b252
79ada0b
 
 
e6acaf6
b085dec
858916d
 
 
 
 
 
 
 
ee82924
 
 
 
 
 
 
 
 
 
79ada0b
 
ee82924
e6acaf6
51482f3
79ada0b
 
b085dec
79ada0b
1daa4bd
bcb7249
79ada0b
3abc590
79ada0b
 
 
 
e6acaf6
 
79ada0b
 
bcb7249
 
b085dec
e6acaf6
 
 
 
 
 
79ada0b
b83edb4
51482f3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import copy
from tika import parser
import re
from io import BytesIO

from rag.nlp import bullets_category, is_english, tokenize, remove_contents_table, \
    hierarchical_merge, make_colon_as_title, naive_merge, random_choices, tokenize_table, add_positions, \
    tokenize_chunks, find_codec
from rag.nlp import rag_tokenizer
from deepdoc.parser import PdfParser, DocxParser, PlainParser, HtmlParser


class Pdf(PdfParser):
    def __call__(self, filename, binary=None, from_page=0,

                 to_page=100000, zoomin=3, callback=None):
        callback(msg="OCR is running...")
        self.__images__(
            filename if not binary else binary,
            zoomin,
            from_page,
            to_page,
            callback)
        callback(msg="OCR finished")

        from timeit import default_timer as timer
        start = timer()
        self._layouts_rec(zoomin)
        callback(0.67, "Layout analysis finished")
        print("layouts:", timer() - start)
        self._table_transformer_job(zoomin)
        callback(0.68, "Table analysis finished")
        self._text_merge()
        tbls = self._extract_table_figure(True, zoomin, True, True)
        self._naive_vertical_merge()
        self._filter_forpages()
        self._merge_with_same_bullet()
        callback(0.75, "Text merging finished.")

        callback(0.8, "Text extraction finished")

        return [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno", ""))
                for b in self.boxes], tbls


def chunk(filename, binary=None, from_page=0, to_page=100000,

          lang="Chinese", callback=None, **kwargs):
    """

        Supported file formats are docx, pdf, txt.

        Since a book is long and not all the parts are useful, if it's a PDF,

        please setup the page ranges for every book in order eliminate negative effects and save elapsed computing time.

    """
    doc = {
        "docnm_kwd": filename,
        "title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename))
    }
    doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
    pdf_parser = None
    sections, tbls = [], []
    if re.search(r"\.docx$", filename, re.IGNORECASE):
        callback(0.1, "Start to parse.")
        doc_parser = DocxParser()
        # TODO: table of contents need to be removed
        sections, tbls = doc_parser(
            binary if binary else filename, from_page=from_page, to_page=to_page)
        remove_contents_table(sections, eng=is_english(
            random_choices([t for t, _ in sections], k=200)))
        tbls = [((None, lns), None) for lns in tbls]
        callback(0.8, "Finish parsing.")

    elif re.search(r"\.pdf$", filename, re.IGNORECASE):
        pdf_parser = Pdf() if kwargs.get(
            "parser_config", {}).get(
            "layout_recognize", True) else PlainParser()
        sections, tbls = pdf_parser(filename if not binary else binary,
                                    from_page=from_page, to_page=to_page, callback=callback)

    elif re.search(r"\.txt$", filename, re.IGNORECASE):
        callback(0.1, "Start to parse.")
        txt = ""
        if binary:
            encoding = find_codec(binary)
            txt = binary.decode(encoding, errors="ignore")
        else:
            with open(filename, "r") as f:
                while True:
                    l = f.readline()
                    if not l:
                        break
                    txt += l
        sections = txt.split("\n")
        sections = [(l, "") for l in sections if l]
        remove_contents_table(sections, eng=is_english(
            random_choices([t for t, _ in sections], k=200)))
        callback(0.8, "Finish parsing.")

    elif re.search(r"\.(htm|html)$", filename, re.IGNORECASE):
        callback(0.1, "Start to parse.")
        sections = HtmlParser()(filename, binary)
        sections = [(l, "") for l in sections if l]
        remove_contents_table(sections, eng=is_english(
            random_choices([t for t, _ in sections], k=200)))
        callback(0.8, "Finish parsing.")

    elif re.search(r"\.doc$", filename, re.IGNORECASE):
        callback(0.1, "Start to parse.")
        binary = BytesIO(binary)
        doc_parsed = parser.from_buffer(binary)
        sections = doc_parsed['content'].split('\n')
        sections = [(l, "") for l in sections if l]
        remove_contents_table(sections, eng=is_english(
            random_choices([t for t, _ in sections], k=200)))
        callback(0.8, "Finish parsing.")

    else:
        raise NotImplementedError(
            "file type not supported yet(doc, docx, pdf, txt supported)")

    make_colon_as_title(sections)
    bull = bullets_category(
        [t for t in random_choices([t for t, _ in sections], k=100)])
    if bull >= 0:
        chunks = ["\n".join(ck)
                  for ck in hierarchical_merge(bull, sections, 5)]
    else:
        sections = [s.split("@") for s, _ in sections]
        sections = [(pr[0], "@" + pr[1]) if len(pr) == 2 else (pr[0], '') for pr in sections ]
        chunks = naive_merge(
            sections, kwargs.get(
                "chunk_token_num", 256), kwargs.get(
                "delimer", "\n。;!?"))

    # is it English
    # is_english(random_choices([t for t, _ in sections], k=218))
    eng = lang.lower() == "english"

    res = tokenize_table(tbls, doc, eng)
    res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))

    return res


if __name__ == "__main__":
    import sys

    def dummy(prog=None, msg=""):
        pass
    chunk(sys.argv[1], from_page=1, to_page=10, callback=dummy)