File size: 12,070 Bytes
e10ed78 e6abe77 e10ed78 e6abe77 e10ed78 e6abe77 e10ed78 e6abe77 e10ed78 32ef5e5 e10ed78 ac8ea20 e10ed78 32ef5e5 4d9237e ac8ea20 e10ed78 4d9237e e10ed78 ac8ea20 e10ed78 ac8ea20 e10ed78 32ef5e5 e10ed78 1c7b682 32ef5e5 1c7b682 32ef5e5 1c7b682 32ef5e5 1c7b682 32ef5e5 1c7b682 32ef5e5 1c7b682 32ef5e5 0404a52 32ef5e5 0b69c87 32ef5e5 e6abe77 44bea96 f23a141 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import _thread as thread
import base64
import hashlib
import hmac
import json
import queue
import re
import ssl
import time
from abc import ABC
from datetime import datetime
from time import mktime
from typing import Annotated, Literal
from urllib.parse import urlencode
from wsgiref.handlers import format_date_time
import httpx
import ormsgpack
import requests
import websocket
from pydantic import BaseModel, conint
from rag.utils import num_tokens_from_string
class ServeReferenceAudio(BaseModel):
audio: bytes
text: str
class ServeTTSRequest(BaseModel):
text: str
chunk_length: Annotated[int, conint(ge=100, le=300, strict=True)] = 200
# Audio format
format: Literal["wav", "pcm", "mp3"] = "mp3"
mp3_bitrate: Literal[64, 128, 192] = 128
# References audios for in-context learning
references: list[ServeReferenceAudio] = []
# Reference id
# For example, if you want use https://fish.audio/m/7f92f8afb8ec43bf81429cc1c9199cb1/
# Just pass 7f92f8afb8ec43bf81429cc1c9199cb1
reference_id: str | None = None
# Normalize text for en & zh, this increase stability for numbers
normalize: bool = True
# Balance mode will reduce latency to 300ms, but may decrease stability
latency: Literal["normal", "balanced"] = "normal"
class Base(ABC):
def __init__(self, key, model_name, base_url):
pass
def tts(self, audio):
pass
def normalize_text(self, text):
return re.sub(r'(\*\*|##\d+\$\$|#)', '', text)
class FishAudioTTS(Base):
def __init__(self, key, model_name, base_url="https://api.fish.audio/v1/tts"):
if not base_url:
base_url = "https://api.fish.audio/v1/tts"
key = json.loads(key)
self.headers = {
"api-key": key.get("fish_audio_ak"),
"content-type": "application/msgpack",
}
self.ref_id = key.get("fish_audio_refid")
self.base_url = base_url
def tts(self, text):
from http import HTTPStatus
text = self.normalize_text(text)
request = ServeTTSRequest(text=text, reference_id=self.ref_id)
with httpx.Client() as client:
try:
with client.stream(
method="POST",
url=self.base_url,
content=ormsgpack.packb(
request, option=ormsgpack.OPT_SERIALIZE_PYDANTIC
),
headers=self.headers,
timeout=None,
) as response:
if response.status_code == HTTPStatus.OK:
for chunk in response.iter_bytes():
yield chunk
else:
response.raise_for_status()
yield num_tokens_from_string(text)
except httpx.HTTPStatusError as e:
raise RuntimeError(f"**ERROR**: {e}")
class QwenTTS(Base):
def __init__(self, key, model_name, base_url=""):
import dashscope
self.model_name = model_name
dashscope.api_key = key
def tts(self, text):
from dashscope.api_entities.dashscope_response import SpeechSynthesisResponse
from dashscope.audio.tts import ResultCallback, SpeechSynthesizer, SpeechSynthesisResult
from collections import deque
class Callback(ResultCallback):
def __init__(self) -> None:
self.dque = deque()
def _run(self):
while True:
if not self.dque:
time.sleep(0)
continue
val = self.dque.popleft()
if val:
yield val
else:
break
def on_open(self):
pass
def on_complete(self):
self.dque.append(None)
def on_error(self, response: SpeechSynthesisResponse):
raise RuntimeError(str(response))
def on_close(self):
pass
def on_event(self, result: SpeechSynthesisResult):
if result.get_audio_frame() is not None:
self.dque.append(result.get_audio_frame())
text = self.normalize_text(text)
callback = Callback()
SpeechSynthesizer.call(model=self.model_name,
text=text,
callback=callback,
format="mp3")
try:
for data in callback._run():
yield data
yield num_tokens_from_string(text)
except Exception as e:
raise RuntimeError(f"**ERROR**: {e}")
class OpenAITTS(Base):
def __init__(self, key, model_name="tts-1", base_url="https://api.openai.com/v1"):
if not base_url:
base_url = "https://api.openai.com/v1"
self.api_key = key
self.model_name = model_name
self.base_url = base_url
self.headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json"
}
def tts(self, text, voice="alloy"):
text = self.normalize_text(text)
payload = {
"model": self.model_name,
"voice": voice,
"input": text
}
response = requests.post(f"{self.base_url}/audio/speech", headers=self.headers, json=payload, stream=True)
if response.status_code != 200:
raise Exception(f"**Error**: {response.status_code}, {response.text}")
for chunk in response.iter_content():
if chunk:
yield chunk
class SparkTTS:
STATUS_FIRST_FRAME = 0
STATUS_CONTINUE_FRAME = 1
STATUS_LAST_FRAME = 2
def __init__(self, key, model_name, base_url=""):
key = json.loads(key)
self.APPID = key.get("spark_app_id", "xxxxxxx")
self.APISecret = key.get("spark_api_secret", "xxxxxxx")
self.APIKey = key.get("spark_api_key", "xxxxxx")
self.model_name = model_name
self.CommonArgs = {"app_id": self.APPID}
self.audio_queue = queue.Queue()
# 用来存储音频数据
# 生成url
def create_url(self):
url = 'wss://tts-api.xfyun.cn/v2/tts'
now = datetime.now()
date = format_date_time(mktime(now.timetuple()))
signature_origin = "host: " + "ws-api.xfyun.cn" + "\n"
signature_origin += "date: " + date + "\n"
signature_origin += "GET " + "/v2/tts " + "HTTP/1.1"
signature_sha = hmac.new(self.APISecret.encode('utf-8'), signature_origin.encode('utf-8'),
digestmod=hashlib.sha256).digest()
signature_sha = base64.b64encode(signature_sha).decode(encoding='utf-8')
authorization_origin = "api_key=\"%s\", algorithm=\"%s\", headers=\"%s\", signature=\"%s\"" % (
self.APIKey, "hmac-sha256", "host date request-line", signature_sha)
authorization = base64.b64encode(authorization_origin.encode('utf-8')).decode(encoding='utf-8')
v = {
"authorization": authorization,
"date": date,
"host": "ws-api.xfyun.cn"
}
url = url + '?' + urlencode(v)
return url
def tts(self, text):
BusinessArgs = {"aue": "lame", "sfl": 1, "auf": "audio/L16;rate=16000", "vcn": self.model_name, "tte": "utf8"}
Data = {"status": 2, "text": base64.b64encode(text.encode('utf-8')).decode('utf-8')}
CommonArgs = {"app_id": self.APPID}
audio_queue = self.audio_queue
model_name = self.model_name
class Callback:
def __init__(self):
self.audio_queue = audio_queue
def on_message(self, ws, message):
message = json.loads(message)
code = message["code"]
sid = message["sid"]
audio = message["data"]["audio"]
audio = base64.b64decode(audio)
status = message["data"]["status"]
if status == 2:
ws.close()
if code != 0:
errMsg = message["message"]
raise Exception(f"sid:{sid} call error:{errMsg} code:{code}")
else:
self.audio_queue.put(audio)
def on_error(self, ws, error):
raise Exception(error)
def on_close(self, ws, close_status_code, close_msg):
self.audio_queue.put(None) # 放入 None 作为结束标志
def on_open(self, ws):
def run(*args):
d = {"common": CommonArgs,
"business": BusinessArgs,
"data": Data}
ws.send(json.dumps(d))
thread.start_new_thread(run, ())
wsUrl = self.create_url()
websocket.enableTrace(False)
a = Callback()
ws = websocket.WebSocketApp(wsUrl, on_open=a.on_open, on_error=a.on_error, on_close=a.on_close,
on_message=a.on_message)
status_code = 0
ws.run_forever(sslopt={"cert_reqs": ssl.CERT_NONE})
while True:
audio_chunk = self.audio_queue.get()
if audio_chunk is None:
if status_code == 0:
raise Exception(
f"Fail to access model({model_name}) using the provided credentials. **ERROR**: Invalid APPID, API Secret, or API Key.")
else:
break
status_code = 1
yield audio_chunk
class XinferenceTTS:
def __init__(self, key, model_name, **kwargs):
self.base_url = kwargs.get("base_url", None)
self.model_name = model_name
self.headers = {
"accept": "application/json",
"Content-Type": "application/json"
}
def tts(self, text, voice="中文女", stream=True):
payload = {
"model": self.model_name,
"input": text,
"voice": voice
}
response = requests.post(
f"{self.base_url}/v1/audio/speech",
headers=self.headers,
json=payload,
stream=stream
)
if response.status_code != 200:
raise Exception(f"**Error**: {response.status_code}, {response.text}")
for chunk in response.iter_content(chunk_size=1024):
if chunk:
yield chunk
class OllamaTTS(Base):
def __init__(self, key, model_name="ollama-tts", base_url="https://api.ollama.ai/v1"):
if not base_url:
base_url = "https://api.ollama.ai/v1"
self.model_name = model_name
self.base_url = base_url
self.headers = {
"Content-Type": "application/json"
}
def tts(self, text, voice="standard-voice"):
payload = {
"model": self.model_name,
"voice": voice,
"input": text
}
response = requests.post(f"{self.base_url}/audio/tts", headers=self.headers, json=payload, stream=True)
if response.status_code != 200:
raise Exception(f"**Error**: {response.status_code}, {response.text}")
for chunk in response.iter_content():
if chunk:
yield chunk
|