File size: 17,413 Bytes
3079197 484e5ab 3079197 c037a22 a86164e 05dad97 c037a22 c9a1362 29b8637 79ada0b 8f39e7a 3079197 8f9784a 3079197 83a0020 c037a22 c87ddd7 1f5bc27 79ada0b 3079197 e32ef75 3079197 2d09c38 c037a22 05dad97 c037a22 3079197 c037a22 05dad97 3079197 c87ddd7 3079197 79ada0b 3079197 c037a22 3079197 9bf75d4 c037a22 9bf75d4 3079197 ba51460 e06e08c 3079197 c87ddd7 3079197 c87ddd7 e32ef75 c87ddd7 e32ef75 3079197 29b8637 d7bf446 3079197 e06e08c 3079197 e32ef75 3079197 c60dccb 21cb28c c60dccb 3079197 c60dccb e32ef75 c60dccb 21cb28c c60dccb 5e0a689 e06e08c 5e0a689 adb65d7 ba51460 adb65d7 5e0a689 adb65d7 8f9784a ba51460 8f9784a ba51460 8f9784a 63df91a a86164e c037a22 a86164e c037a22 a86164e ba51460 c037a22 a86164e ba51460 a86164e ba51460 a86164e 63df91a a86164e ba51460 3069c36 ba51460 3069c36 ba51460 3069c36 22390c0 ba51460 3069c36 ba51460 3069c36 ba51460 3069c36 ba51460 c037a22 6ad2626 c037a22 b43a465 83a0020 b43a465 83a0020 b43a465 83a0020 b43a465 4825b73 dffdcde 1f5bc27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re
from typing import Optional
import threading
import requests
from huggingface_hub import snapshot_download
from openai.lib.azure import AzureOpenAI
from zhipuai import ZhipuAI
import os
from abc import ABC
from ollama import Client
import dashscope
from openai import OpenAI
from FlagEmbedding import FlagModel
import torch
import numpy as np
import asyncio
from api.utils.file_utils import get_home_cache_dir
from rag.utils import num_tokens_from_string, truncate
import google.generativeai as genai
class Base(ABC):
def __init__(self, key, model_name):
pass
def encode(self, texts: list, batch_size=32):
raise NotImplementedError("Please implement encode method!")
def encode_queries(self, text: str):
raise NotImplementedError("Please implement encode method!")
class DefaultEmbedding(Base):
_model = None
_model_lock = threading.Lock()
def __init__(self, key, model_name, **kwargs):
"""
If you have trouble downloading HuggingFace models, -_^ this might help!!
For Linux:
export HF_ENDPOINT=https://hf-mirror.com
For Windows:
Good luck
^_-
"""
if not DefaultEmbedding._model:
with DefaultEmbedding._model_lock:
if not DefaultEmbedding._model:
try:
DefaultEmbedding._model = FlagModel(os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z]+/", "", model_name)),
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
use_fp16=torch.cuda.is_available())
except Exception as e:
model_dir = snapshot_download(repo_id="BAAI/bge-large-zh-v1.5",
local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z]+/", "", model_name)),
local_dir_use_symlinks=False)
DefaultEmbedding._model = FlagModel(model_dir,
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
use_fp16=torch.cuda.is_available())
self._model = DefaultEmbedding._model
def encode(self, texts: list, batch_size=32):
texts = [truncate(t, 2048) for t in texts]
token_count = 0
for t in texts:
token_count += num_tokens_from_string(t)
res = []
for i in range(0, len(texts), batch_size):
res.extend(self._model.encode(texts[i:i + batch_size]).tolist())
return np.array(res), token_count
def encode_queries(self, text: str):
token_count = num_tokens_from_string(text)
return self._model.encode_queries([text]).tolist()[0], token_count
class OpenAIEmbed(Base):
def __init__(self, key, model_name="text-embedding-ada-002",
base_url="https://api.openai.com/v1"):
if not base_url:
base_url = "https://api.openai.com/v1"
self.client = OpenAI(api_key=key, base_url=base_url)
self.model_name = model_name
def encode(self, texts: list, batch_size=32):
texts = [truncate(t, 8196) for t in texts]
res = self.client.embeddings.create(input=texts,
model=self.model_name)
return np.array([d.embedding for d in res.data]
), res.usage.total_tokens
def encode_queries(self, text):
res = self.client.embeddings.create(input=[truncate(text, 8196)],
model=self.model_name)
return np.array(res.data[0].embedding), res.usage.total_tokens
class AzureEmbed(Base):
def __init__(self, key, model_name, **kwargs):
self.client = AzureOpenAI(api_key=key, azure_endpoint=kwargs["base_url"], api_version="2024-02-01")
self.model_name = model_name
class BaiChuanEmbed(OpenAIEmbed):
def __init__(self, key,
model_name='Baichuan-Text-Embedding',
base_url='https://api.baichuan-ai.com/v1'):
if not base_url:
base_url = "https://api.baichuan-ai.com/v1"
super().__init__(key, model_name, base_url)
class QWenEmbed(Base):
def __init__(self, key, model_name="text_embedding_v2", **kwargs):
dashscope.api_key = key
self.model_name = model_name
def encode(self, texts: list, batch_size=10):
import dashscope
try:
res = []
token_count = 0
texts = [truncate(t, 2048) for t in texts]
for i in range(0, len(texts), batch_size):
resp = dashscope.TextEmbedding.call(
model=self.model_name,
input=texts[i:i + batch_size],
text_type="document"
)
embds = [[] for _ in range(len(resp["output"]["embeddings"]))]
for e in resp["output"]["embeddings"]:
embds[e["text_index"]] = e["embedding"]
res.extend(embds)
token_count += resp["usage"]["total_tokens"]
return np.array(res), token_count
except Exception as e:
raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name)
return np.array([]), 0
def encode_queries(self, text):
try:
resp = dashscope.TextEmbedding.call(
model=self.model_name,
input=text[:2048],
text_type="query"
)
return np.array(resp["output"]["embeddings"][0]
["embedding"]), resp["usage"]["total_tokens"]
except Exception as e:
raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name)
return np.array([]), 0
class ZhipuEmbed(Base):
def __init__(self, key, model_name="embedding-2", **kwargs):
self.client = ZhipuAI(api_key=key)
self.model_name = model_name
def encode(self, texts: list, batch_size=32):
arr = []
tks_num = 0
for txt in texts:
res = self.client.embeddings.create(input=txt,
model=self.model_name)
arr.append(res.data[0].embedding)
tks_num += res.usage.total_tokens
return np.array(arr), tks_num
def encode_queries(self, text):
res = self.client.embeddings.create(input=text,
model=self.model_name)
return np.array(res.data[0].embedding), res.usage.total_tokens
class OllamaEmbed(Base):
def __init__(self, key, model_name, **kwargs):
self.client = Client(host=kwargs["base_url"])
self.model_name = model_name
def encode(self, texts: list, batch_size=32):
arr = []
tks_num = 0
for txt in texts:
res = self.client.embeddings(prompt=txt,
model=self.model_name)
arr.append(res["embedding"])
tks_num += 128
return np.array(arr), tks_num
def encode_queries(self, text):
res = self.client.embeddings(prompt=text,
model=self.model_name)
return np.array(res["embedding"]), 128
class FastEmbed(Base):
_model = None
def __init__(
self,
key: Optional[str] = None,
model_name: str = "BAAI/bge-small-en-v1.5",
cache_dir: Optional[str] = None,
threads: Optional[int] = None,
**kwargs,
):
from fastembed import TextEmbedding
if not FastEmbed._model:
self._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
def encode(self, texts: list, batch_size=32):
# Using the internal tokenizer to encode the texts and get the total
# number of tokens
encodings = self._model.model.tokenizer.encode_batch(texts)
total_tokens = sum(len(e) for e in encodings)
embeddings = [e.tolist() for e in self._model.embed(texts, batch_size)]
return np.array(embeddings), total_tokens
def encode_queries(self, text: str):
# Using the internal tokenizer to encode the texts and get the total
# number of tokens
encoding = self._model.model.tokenizer.encode(text)
embedding = next(self._model.query_embed(text)).tolist()
return np.array(embedding), len(encoding.ids)
class XinferenceEmbed(Base):
def __init__(self, key, model_name="", base_url=""):
self.client = OpenAI(api_key="xxx", base_url=base_url)
self.model_name = model_name
def encode(self, texts: list, batch_size=32):
res = self.client.embeddings.create(input=texts,
model=self.model_name)
return np.array([d.embedding for d in res.data]
), res.usage.total_tokens
def encode_queries(self, text):
res = self.client.embeddings.create(input=[text],
model=self.model_name)
return np.array(res.data[0].embedding), res.usage.total_tokens
class YoudaoEmbed(Base):
_client = None
def __init__(self, key=None, model_name="maidalun1020/bce-embedding-base_v1", **kwargs):
from BCEmbedding import EmbeddingModel as qanthing
if not YoudaoEmbed._client:
try:
print("LOADING BCE...")
YoudaoEmbed._client = qanthing(model_name_or_path=os.path.join(
get_home_cache_dir(),
"bce-embedding-base_v1"))
except Exception as e:
YoudaoEmbed._client = qanthing(
model_name_or_path=model_name.replace(
"maidalun1020", "InfiniFlow"))
def encode(self, texts: list, batch_size=10):
res = []
token_count = 0
for t in texts:
token_count += num_tokens_from_string(t)
for i in range(0, len(texts), batch_size):
embds = YoudaoEmbed._client.encode(texts[i:i + batch_size])
res.extend(embds)
return np.array(res), token_count
def encode_queries(self, text):
embds = YoudaoEmbed._client.encode([text])
return np.array(embds[0]), num_tokens_from_string(text)
class JinaEmbed(Base):
def __init__(self, key, model_name="jina-embeddings-v2-base-zh",
base_url="https://api.jina.ai/v1/embeddings"):
self.base_url = "https://api.jina.ai/v1/embeddings"
self.headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {key}"
}
self.model_name = model_name
def encode(self, texts: list, batch_size=None):
texts = [truncate(t, 8196) for t in texts]
data = {
"model": self.model_name,
"input": texts,
'encoding_type': 'float'
}
res = requests.post(self.base_url, headers=self.headers, json=data).json()
return np.array([d["embedding"] for d in res["data"]]), res["usage"]["total_tokens"]
def encode_queries(self, text):
embds, cnt = self.encode([text])
return np.array(embds[0]), cnt
class InfinityEmbed(Base):
_model = None
def __init__(
self,
model_names: list[str] = ("BAAI/bge-small-en-v1.5",),
engine_kwargs: dict = {},
key = None,
):
from infinity_emb import EngineArgs
from infinity_emb.engine import AsyncEngineArray
self._default_model = model_names[0]
self.engine_array = AsyncEngineArray.from_args([EngineArgs(model_name_or_path = model_name, **engine_kwargs) for model_name in model_names])
async def _embed(self, sentences: list[str], model_name: str = ""):
if not model_name:
model_name = self._default_model
engine = self.engine_array[model_name]
was_already_running = engine.is_running
if not was_already_running:
await engine.astart()
embeddings, usage = await engine.embed(sentences=sentences)
if not was_already_running:
await engine.astop()
return embeddings, usage
def encode(self, texts: list[str], model_name: str = "") -> tuple[np.ndarray, int]:
# Using the internal tokenizer to encode the texts and get the total
# number of tokens
embeddings, usage = asyncio.run(self._embed(texts, model_name))
return np.array(embeddings), usage
def encode_queries(self, text: str) -> tuple[np.ndarray, int]:
# Using the internal tokenizer to encode the texts and get the total
# number of tokens
return self.encode([text])
class MistralEmbed(Base):
def __init__(self, key, model_name="mistral-embed",
base_url=None):
from mistralai.client import MistralClient
self.client = MistralClient(api_key=key)
self.model_name = model_name
def encode(self, texts: list, batch_size=32):
texts = [truncate(t, 8196) for t in texts]
res = self.client.embeddings(input=texts,
model=self.model_name)
return np.array([d.embedding for d in res.data]
), res.usage.total_tokens
def encode_queries(self, text):
res = self.client.embeddings(input=[truncate(text, 8196)],
model=self.model_name)
return np.array(res.data[0].embedding), res.usage.total_tokens
class BedrockEmbed(Base):
def __init__(self, key, model_name,
**kwargs):
import boto3
self.bedrock_ak = eval(key).get('bedrock_ak', '')
self.bedrock_sk = eval(key).get('bedrock_sk', '')
self.bedrock_region = eval(key).get('bedrock_region', '')
self.model_name = model_name
self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region,
aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
def encode(self, texts: list, batch_size=32):
texts = [truncate(t, 8196) for t in texts]
embeddings = []
token_count = 0
for text in texts:
if self.model_name.split('.')[0] == 'amazon':
body = {"inputText": text}
elif self.model_name.split('.')[0] == 'cohere':
body = {"texts": [text], "input_type": 'search_document'}
response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
model_response = json.loads(response["body"].read())
embeddings.extend([model_response["embedding"]])
token_count += num_tokens_from_string(text)
return np.array(embeddings), token_count
def encode_queries(self, text):
embeddings = []
token_count = num_tokens_from_string(text)
if self.model_name.split('.')[0] == 'amazon':
body = {"inputText": truncate(text, 8196)}
elif self.model_name.split('.')[0] == 'cohere':
body = {"texts": [truncate(text, 8196)], "input_type": 'search_query'}
response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
model_response = json.loads(response["body"].read())
embeddings.extend([model_response["embedding"]])
return np.array(embeddings), token_count
class GeminiEmbed(Base):
def __init__(self, key, model_name='models/text-embedding-004',
**kwargs):
genai.configure(api_key=key)
self.model_name = 'models/' + model_name
def encode(self, texts: list, batch_size=32):
texts = [truncate(t, 2048) for t in texts]
token_count = sum(num_tokens_from_string(text) for text in texts)
result = genai.embed_content(
model=self.model_name,
content=texts,
task_type="retrieval_document",
title="Embedding of list of strings")
return np.array(result['embedding']),token_count
def encode_queries(self, text):
result = genai.embed_content(
model=self.model_name,
content=truncate(text,2048),
task_type="retrieval_document",
title="Embedding of single string")
token_count = num_tokens_from_string(text)
return np.array(result['embedding']),token_count |