File size: 3,834 Bytes
a3ebd45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bc2fc9
a3ebd45
 
 
6054f54
a3ebd45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e144e5
a3ebd45
 
 
 
 
 
 
 
 
3e144e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3ebd45
 
 
 
 
 
 
 
 
 
 
dba7799
a3ebd45
3e144e5
43b4969
 
 
 
 
3e144e5
a3ebd45
 
3e144e5
a3ebd45
b85ddd8
 
a3ebd45
8bc2fc9
a3ebd45
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import logging
from abc import ABC
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from agent.component import GenerateParam, Generate


class RewriteQuestionParam(GenerateParam):

    """
    Define the QuestionRewrite component parameters.
    """
    def __init__(self):
        super().__init__()
        self.temperature = 0.9
        self.prompt = ""
        self.loop = 1

    def check(self):
        super().check()

    def get_prompt(self, conv):
        self.prompt = """
        You are an expert at query expansion to generate a paraphrasing of a question.
        I can't retrieval relevant information from the knowledge base by using user's question directly.     
        You need to expand or paraphrase user's question by multiple ways such as using synonyms words/phrase, 
        writing the abbreviation in its entirety, adding some extra descriptions or explanations, 
        changing the way of expression, translating the original question into another language (English/Chinese), etc. 
        And return 5 versions of question and one is from translation.
        Just list the question. No other words are needed.
        """
        return f"""
Role: A helpful assistant
Task: Generate a full user question that would follow the conversation.
Requirements & Restrictions:
  - Text generated MUST be in the same language of the original user's question.
  - If the user's latest question is completely, don't do anything, just return the original question.
  - DON'T generate anything except a refined question.

######################
-Examples-
######################
# Example 1
## Conversation
USER: What is the name of Donald Trump's father?
ASSISTANT:  Fred Trump.
USER: And his mother?
###############
Output: What's the name of Donald Trump's mother?
------------
# Example 2
## Conversation
USER: What is the name of Donald Trump's father?
ASSISTANT:  Fred Trump.
USER: And his mother?
ASSISTANT:  Mary Trump.
User: What's her full name?
###############
Output: What's the full name of Donald Trump's mother Mary Trump?
######################
# Real Data
## Conversation
{conv}
###############
    """
        return self.prompt


class RewriteQuestion(Generate, ABC):
    component_name = "RewriteQuestion"

    def _run(self, history, **kwargs):
        if not hasattr(self, "_loop"):
            setattr(self, "_loop", 0)
        if self._loop >= self._param.loop:
            self._loop = 0
            raise Exception("Sorry! Nothing relevant found.")
        self._loop += 1

        hist = self._canvas.get_history(4)
        conv = []
        for m in hist:
            if m["role"] not in ["user", "assistant"]: continue
            conv.append("{}: {}".format(m["role"].upper(), m["content"]))
        conv = "\n".join(conv)

        chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
        ans = chat_mdl.chat(self._param.get_prompt(conv), [{"role": "user", "content": "Output: "}],
                            self._param.gen_conf())
        self._canvas.history.pop()
        self._canvas.history.append(("user", ans))

        logging.debug(ans)
        return RewriteQuestion.be_output(ans)