File size: 3,045 Bytes
1550520
 
 
 
 
 
9fe9fc4
1550520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fe9fc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1550520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fe9fc4
1550520
 
9fe9fc4
1550520
9fe9fc4
1550520
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import argparse
import pickle
import random
import time
from multiprocessing.connection import Listener
from threading import Thread
from transformers import AutoModelForCausalLM, AutoTokenizer


class RPCHandler:
    def __init__(self):
        self._functions = { }

    def register_function(self, func):
        self._functions[func.__name__] = func

    def handle_connection(self, connection):
        try:
            while True:
                # Receive a message
                func_name, args, kwargs = pickle.loads(connection.recv())
                # Run the RPC and send a response
                try:
                    r = self._functions[func_name](*args,**kwargs)
                    connection.send(pickle.dumps(r))
                except Exception as e:
                    connection.send(pickle.dumps(e))
        except EOFError:
             pass


def rpc_server(hdlr, address, authkey):
    sock = Listener(address, authkey=authkey)
    while True:
        try:
            client = sock.accept()
            t = Thread(target=hdlr.handle_connection, args=(client,))
            t.daemon = True
            t.start()
        except Exception as e:
            print("【EXCEPTION】:", str(e))


models = []
tokenizer = None

def chat(messages, gen_conf):
    global tokenizer
    model = Model()
    try:
        conf = {"max_new_tokens": int(gen_conf.get("max_tokens", 256)), "temperature": float(gen_conf.get("temperature", 0.1))}
        print(messages, conf)
        text = tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True
        )
        model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

        generated_ids = model.generate(
            model_inputs.input_ids,
            **conf
        )
        generated_ids = [
            output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
        ]

        return tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
    except Exception as e:
        return str(e)


def Model():
    global models
    random.seed(time.time())
    return random.choice(models)

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_name", type=str, help="Model name")
    parser.add_argument("--port", default=7860, type=int, help="RPC serving port")
    args = parser.parse_args()

    handler = RPCHandler()
    handler.register_function(chat)

    models = []
    for _ in range(1):
        m = AutoModelForCausalLM.from_pretrained(args.model_name,
                                                 device_map="auto",
                                                 torch_dtype='auto')
        models.append(m)
    tokenizer = AutoTokenizer.from_pretrained(args.model_name)

    # Run the server
    rpc_server(handler, ('0.0.0.0', args.port), authkey=b'infiniflow-token4kevinhu')