File size: 3,753 Bytes
9cba22c 8bc2fc9 22fe41e 41c7a59 cfd6ece 41c7a59 22fe41e 41c7a59 0404a52 41c7a59 0404a52 41c7a59 0404a52 41c7a59 22fe41e 41c7a59 0404a52 cfd6ece 41c7a59 0404a52 41c7a59 1b2aab6 0404a52 41c7a59 0404a52 41c7a59 0404a52 41c7a59 0404a52 41c7a59 0404a52 41c7a59 0404a52 41c7a59 22fe41e 8bc2fc9 0404a52 41c7a59 0404a52 41c7a59 0404a52 41c7a59 0404a52 41c7a59 0404a52 41c7a59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import re
import json
import os
import pandas as pd
from rag.nlp import rag_tokenizer
from . import regions
current_file_path = os.path.dirname(os.path.abspath(__file__))
GOODS = pd.read_csv(
os.path.join(current_file_path, "res/corp_baike_len.csv"), sep="\t", header=0
).fillna(0)
GOODS["cid"] = GOODS["cid"].astype(str)
GOODS = GOODS.set_index(["cid"])
CORP_TKS = json.load(
open(os.path.join(current_file_path, "res/corp.tks.freq.json"), "r")
)
GOOD_CORP = json.load(open(os.path.join(current_file_path, "res/good_corp.json"), "r"))
CORP_TAG = json.load(open(os.path.join(current_file_path, "res/corp_tag.json"), "r"))
def baike(cid, default_v=0):
global GOODS
try:
return GOODS.loc[str(cid), "len"]
except Exception:
pass
return default_v
def corpNorm(nm, add_region=True):
global CORP_TKS
if not nm or isinstance(nm, str):
return ""
nm = rag_tokenizer.tradi2simp(rag_tokenizer.strQ2B(nm)).lower()
nm = re.sub(r"&", "&", nm)
nm = re.sub(r"[\(\)()\+'\"\t \*\\【】-]+", " ", nm)
nm = re.sub(
r"([—-]+.*| +co\..*|corp\..*| +inc\..*| +ltd.*)", "", nm, 10000, re.IGNORECASE
)
nm = re.sub(
r"(计算机|技术|(技术|科技|网络)*有限公司|公司|有限|研发中心|中国|总部)$",
"",
nm,
10000,
re.IGNORECASE,
)
if not nm or (len(nm) < 5 and not regions.isName(nm[0:2])):
return nm
tks = rag_tokenizer.tokenize(nm).split()
reg = [t for i, t in enumerate(tks) if regions.isName(t) and (t != "中国" or i > 0)]
nm = ""
for t in tks:
if regions.isName(t) or t in CORP_TKS:
continue
if re.match(r"[0-9a-zA-Z\\,.]+", t) and re.match(r".*[0-9a-zA-Z\,.]+$", nm):
nm += " "
nm += t
r = re.search(r"^([^a-z0-9 \(\)&]{2,})[a-z ]{4,}$", nm.strip())
if r:
nm = r.group(1)
r = re.search(r"^([a-z ]{3,})[^a-z0-9 \(\)&]{2,}$", nm.strip())
if r:
nm = r.group(1)
return nm.strip() + (("" if not reg else "(%s)" % reg[0]) if add_region else "")
def rmNoise(n):
n = re.sub(r"[\((][^()()]+[))]", "", n)
n = re.sub(r"[,. &()()]+", "", n)
return n
GOOD_CORP = set([corpNorm(rmNoise(c), False) for c in GOOD_CORP])
for c, v in CORP_TAG.items():
cc = corpNorm(rmNoise(c), False)
if not cc:
logging.debug(c)
CORP_TAG = {corpNorm(rmNoise(c), False): v for c, v in CORP_TAG.items()}
def is_good(nm):
global GOOD_CORP
if nm.find("外派") >= 0:
return False
nm = rmNoise(nm)
nm = corpNorm(nm, False)
for n in GOOD_CORP:
if re.match(r"[0-9a-zA-Z]+$", n):
if n == nm:
return True
elif nm.find(n) >= 0:
return True
return False
def corp_tag(nm):
global CORP_TAG
nm = rmNoise(nm)
nm = corpNorm(nm, False)
for n in CORP_TAG.keys():
if re.match(r"[0-9a-zA-Z., ]+$", n):
if n == nm:
return CORP_TAG[n]
elif nm.find(n) >= 0:
if len(n) < 3 and len(nm) / len(n) >= 2:
continue
return CORP_TAG[n]
return []
|