File size: 11,683 Bytes
e1017ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c1ae34
 
e1017ef
9c1ae34
e1017ef
 
 
 
 
 
 
9c1ae34
 
e1017ef
 
9c1ae34
e1017ef
 
 
 
 
 
9c1ae34
e1017ef
9c1ae34
e1017ef
 
9c1ae34
e1017ef
 
 
9c1ae34
e1017ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c1ae34
e1017ef
9c1ae34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1017ef
9c1ae34
 
 
e1017ef
9c1ae34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1017ef
 
 
9c1ae34
e1017ef
9c1ae34
 
e1017ef
9c1ae34
 
e1017ef
 
9c1ae34
 
e1017ef
9c1ae34
e1017ef
9c1ae34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1017ef
9c1ae34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import json
import os
from collections import defaultdict
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.settings import retrievaler
from api.utils import get_uuid
from rag.nlp import tokenize, search
from rag.utils.es_conn import ELASTICSEARCH
from ranx import evaluate
import pandas as pd
from tqdm import tqdm


class Benchmark:
    def __init__(self, kb_id):
        e, kb = KnowledgebaseService.get_by_id(kb_id)
        self.similarity_threshold = kb.similarity_threshold
        self.vector_similarity_weight = kb.vector_similarity_weight
        self.embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id, lang=kb.language)

    def _get_benchmarks(self, query, dataset_idxnm, count=16):
        req = {"question": query, "size": count, "vector": True, "similarity": self.similarity_threshold}
        sres = retrievaler.search(req, search.index_name(dataset_idxnm), self.embd_mdl)
        return sres

    def _get_retrieval(self, qrels, dataset_idxnm):
        run = defaultdict(dict)
        query_list = list(qrels.keys())
        for query in query_list:
            sres = self._get_benchmarks(query, dataset_idxnm)
            sim, _, _ = retrievaler.rerank(sres, query, 1 - self.vector_similarity_weight,
                                           self.vector_similarity_weight)
            for index, id in enumerate(sres.ids):
                run[query][id] = sim[index]
        return run

    def embedding(self, docs, batch_size=16):
        vects = []
        cnts = [d["content_with_weight"] for d in docs]
        for i in range(0, len(cnts), batch_size):
            vts, c = self.embd_mdl.encode(cnts[i: i + batch_size])
            vects.extend(vts.tolist())
        assert len(docs) == len(vects)
        for i, d in enumerate(docs):
            v = vects[i]
            d["q_%d_vec" % len(v)] = v
        return docs

    def ms_marco_index(self, file_path, index_name):
        qrels = defaultdict(dict)
        texts = defaultdict(dict)
        docs = []
        filelist = os.listdir(file_path)
        for dir in filelist:
            data = pd.read_parquet(os.path.join(file_path, dir))
            for i in tqdm(range(len(data)), colour="green", desc="Indexing:" + dir):

                query = data.iloc[i]['query']
                for rel, text in zip(data.iloc[i]['passages']['is_selected'], data.iloc[i]['passages']['passage_text']):
                    d = {
                        "id": get_uuid()
                    }
                    tokenize(d, text, "english")
                    docs.append(d)
                    texts[d["id"]] = text
                    qrels[query][d["id"]] = int(rel)
                if len(docs) >= 32:
                    docs = self.embedding(docs)
                    ELASTICSEARCH.bulk(docs, search.index_name(index_name))
                    docs = []

        docs = self.embedding(docs)
        ELASTICSEARCH.bulk(docs, search.index_name(index_name))
        return qrels, texts

    def trivia_qa_index(self, file_path, index_name):
        qrels = defaultdict(dict)
        texts = defaultdict(dict)
        docs = []
        filelist = os.listdir(file_path)
        for dir in filelist:
            data = pd.read_parquet(os.path.join(file_path, dir))
            for i in tqdm(range(len(data)), colour="green", desc="Indexing:" + dir):
                query = data.iloc[i]['question']
                for rel, text in zip(data.iloc[i]["search_results"]['rank'],
                                     data.iloc[i]["search_results"]['search_context']):
                    d = {
                        "id": get_uuid()
                    }
                    tokenize(d, text, "english")
                    docs.append(d)
                    texts[d["id"]] = text
                    qrels[query][d["id"]] = int(rel)
                if len(docs) >= 32:
                    docs = self.embedding(docs)
                    ELASTICSEARCH.bulk(docs, search.index_name(index_name))
                    docs = []

        docs = self.embedding(docs)
        ELASTICSEARCH.bulk(docs, search.index_name(index_name))
        return qrels, texts

    def miracl_index(self, file_path, corpus_path, index_name):

        corpus_total = {}
        for corpus_file in os.listdir(corpus_path):
            tmp_data = pd.read_json(os.path.join(corpus_path, corpus_file), lines=True)
            for index, i in tmp_data.iterrows():
                corpus_total[i['docid']] = i['text']

        topics_total = {}
        for topics_file in os.listdir(os.path.join(file_path, 'topics')):
            if 'test' in topics_file:
                continue
            tmp_data = pd.read_csv(os.path.join(file_path, 'topics', topics_file), sep='\t', names=['qid', 'query'])
            for index, i in tmp_data.iterrows():
                topics_total[i['qid']] = i['query']

        qrels = defaultdict(dict)
        texts = defaultdict(dict)
        docs = []
        for qrels_file in os.listdir(os.path.join(file_path, 'qrels')):
            if 'test' in qrels_file:
                continue

            tmp_data = pd.read_csv(os.path.join(file_path, 'qrels', qrels_file), sep='\t',
                                   names=['qid', 'Q0', 'docid', 'relevance'])
            for i in tqdm(range(len(tmp_data)), colour="green", desc="Indexing:" + qrels_file):
                query = topics_total[tmp_data.iloc[i]['qid']]
                text = corpus_total[tmp_data.iloc[i]['docid']]
                rel = tmp_data.iloc[i]['relevance']
                d = {
                    "id": get_uuid()
                }
                tokenize(d, text, 'english')
                docs.append(d)
                texts[d["id"]] = text
                qrels[query][d["id"]] = int(rel)
                if len(docs) >= 32:
                    docs = self.embedding(docs)
                    ELASTICSEARCH.bulk(docs, search.index_name(index_name))
                    docs = []

        docs = self.embedding(docs)
        ELASTICSEARCH.bulk(docs, search.index_name(index_name))

        return qrels, texts

    def save_results(self, qrels, run, texts, dataset, file_path):
        keep_result = []
        run_keys = list(run.keys())
        for run_i in tqdm(range(len(run_keys)), desc="Calculating ndcg@10 for single query"):
            key = run_keys[run_i]
            keep_result.append({'query': key, 'qrel': qrels[key], 'run': run[key],
                                'ndcg@10': evaluate({key: qrels[key]}, {key: run[key]}, "ndcg@10")})
        keep_result = sorted(keep_result, key=lambda kk: kk['ndcg@10'])
        with open(os.path.join(file_path, dataset + 'result.md'), 'w', encoding='utf-8') as f:
            f.write('## Score For Every Query\n')
            for keep_result_i in keep_result:
                f.write('### query: ' + keep_result_i['query'] + ' ndcg@10:' + str(keep_result_i['ndcg@10']) + '\n')
                scores = [[i[0], i[1]] for i in keep_result_i['run'].items()]
                scores = sorted(scores, key=lambda kk: kk[1])
                for score in scores[:10]:
                    f.write('- text: ' + str(texts[score[0]]) + '\t qrel: ' + str(score[1]) + '\n')
        print(os.path.join(file_path, dataset + '_result.md'), 'Saved!')

    def __call__(self, dataset, file_path, miracl_corpus=''):
        if dataset == "ms_marco_v1.1":
            qrels, texts = self.ms_marco_index(file_path, "benchmark_ms_marco_v1.1")
            run = self._get_retrieval(qrels, "benchmark_ms_marco_v1.1")
            print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"]))
            self.save_results(qrels, run, texts, dataset, file_path)
        if dataset == "trivia_qa":
            qrels, texts = self.trivia_qa_index(file_path, "benchmark_trivia_qa")
            run = self._get_retrieval(qrels, "benchmark_trivia_qa")
            print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"]))
            self.save_results(qrels, run, texts, dataset, file_path)
        if dataset == "miracl":
            for lang in ['ar', 'bn', 'de', 'en', 'es', 'fa', 'fi', 'fr', 'hi', 'id', 'ja', 'ko', 'ru', 'sw', 'te', 'th',
                         'yo', 'zh']:
                if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang)):
                    print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang) + ' not found!')
                    continue
                if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels')):
                    print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels') + 'not found!')
                    continue
                if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics')):
                    print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics') + 'not found!')
                    continue
                if not os.path.isdir(os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang)):
                    print('Directory: ' + os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang) + ' not found!')
                    continue
                qrels, texts = self.miracl_index(os.path.join(file_path, 'miracl-v1.0-' + lang),
                                                 os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang),
                                                 "benchmark_miracl_" + lang)
                run = self._get_retrieval(qrels, "benchmark_miracl_" + lang)
                print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"]))
                self.save_results(qrels, run, texts, dataset, file_path)


if __name__ == '__main__':
    print('*****************RAGFlow Benchmark*****************')
    kb_id = input('Please input kb_id:\n')
    ex = Benchmark(kb_id)
    dataset = input(
        'RAGFlow Benchmark Support:\n\tms_marco_v1.1:<https://huggingface.co/datasets/microsoft/ms_marco>\n\ttrivia_qa:<https://huggingface.co/datasets/mandarjoshi/trivia_qa>\n\tmiracl:<https://huggingface.co/datasets/miracl/miracl>\nPlease input dataset choice:\n')
    if dataset in ['ms_marco_v1.1', 'trivia_qa']:
        if dataset == "ms_marco_v1.1":
            print("Notice: Please provide the ms_marco_v1.1 dataset only. ms_marco_v2.1 is not supported!")
        dataset_path = input('Please input ' + dataset + ' dataset path:\n')
        ex(dataset, dataset_path)
    elif dataset == 'miracl':
        dataset_path = input('Please input ' + dataset + ' dataset path:\n')
        corpus_path = input('Please input ' + dataset + '-corpus dataset path:\n')
        ex(dataset, dataset_path, miracl_corpus=corpus_path)
    else:
        print("Dataset: ", dataset, "not supported!")