File size: 11,683 Bytes
e1017ef 9c1ae34 e1017ef 9c1ae34 e1017ef 9c1ae34 e1017ef 9c1ae34 e1017ef 9c1ae34 e1017ef 9c1ae34 e1017ef 9c1ae34 e1017ef 9c1ae34 e1017ef 9c1ae34 e1017ef 9c1ae34 e1017ef 9c1ae34 e1017ef 9c1ae34 e1017ef 9c1ae34 e1017ef 9c1ae34 e1017ef 9c1ae34 e1017ef 9c1ae34 e1017ef 9c1ae34 e1017ef 9c1ae34 e1017ef 9c1ae34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import os
from collections import defaultdict
from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.settings import retrievaler
from api.utils import get_uuid
from rag.nlp import tokenize, search
from rag.utils.es_conn import ELASTICSEARCH
from ranx import evaluate
import pandas as pd
from tqdm import tqdm
class Benchmark:
def __init__(self, kb_id):
e, kb = KnowledgebaseService.get_by_id(kb_id)
self.similarity_threshold = kb.similarity_threshold
self.vector_similarity_weight = kb.vector_similarity_weight
self.embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id, lang=kb.language)
def _get_benchmarks(self, query, dataset_idxnm, count=16):
req = {"question": query, "size": count, "vector": True, "similarity": self.similarity_threshold}
sres = retrievaler.search(req, search.index_name(dataset_idxnm), self.embd_mdl)
return sres
def _get_retrieval(self, qrels, dataset_idxnm):
run = defaultdict(dict)
query_list = list(qrels.keys())
for query in query_list:
sres = self._get_benchmarks(query, dataset_idxnm)
sim, _, _ = retrievaler.rerank(sres, query, 1 - self.vector_similarity_weight,
self.vector_similarity_weight)
for index, id in enumerate(sres.ids):
run[query][id] = sim[index]
return run
def embedding(self, docs, batch_size=16):
vects = []
cnts = [d["content_with_weight"] for d in docs]
for i in range(0, len(cnts), batch_size):
vts, c = self.embd_mdl.encode(cnts[i: i + batch_size])
vects.extend(vts.tolist())
assert len(docs) == len(vects)
for i, d in enumerate(docs):
v = vects[i]
d["q_%d_vec" % len(v)] = v
return docs
def ms_marco_index(self, file_path, index_name):
qrels = defaultdict(dict)
texts = defaultdict(dict)
docs = []
filelist = os.listdir(file_path)
for dir in filelist:
data = pd.read_parquet(os.path.join(file_path, dir))
for i in tqdm(range(len(data)), colour="green", desc="Indexing:" + dir):
query = data.iloc[i]['query']
for rel, text in zip(data.iloc[i]['passages']['is_selected'], data.iloc[i]['passages']['passage_text']):
d = {
"id": get_uuid()
}
tokenize(d, text, "english")
docs.append(d)
texts[d["id"]] = text
qrels[query][d["id"]] = int(rel)
if len(docs) >= 32:
docs = self.embedding(docs)
ELASTICSEARCH.bulk(docs, search.index_name(index_name))
docs = []
docs = self.embedding(docs)
ELASTICSEARCH.bulk(docs, search.index_name(index_name))
return qrels, texts
def trivia_qa_index(self, file_path, index_name):
qrels = defaultdict(dict)
texts = defaultdict(dict)
docs = []
filelist = os.listdir(file_path)
for dir in filelist:
data = pd.read_parquet(os.path.join(file_path, dir))
for i in tqdm(range(len(data)), colour="green", desc="Indexing:" + dir):
query = data.iloc[i]['question']
for rel, text in zip(data.iloc[i]["search_results"]['rank'],
data.iloc[i]["search_results"]['search_context']):
d = {
"id": get_uuid()
}
tokenize(d, text, "english")
docs.append(d)
texts[d["id"]] = text
qrels[query][d["id"]] = int(rel)
if len(docs) >= 32:
docs = self.embedding(docs)
ELASTICSEARCH.bulk(docs, search.index_name(index_name))
docs = []
docs = self.embedding(docs)
ELASTICSEARCH.bulk(docs, search.index_name(index_name))
return qrels, texts
def miracl_index(self, file_path, corpus_path, index_name):
corpus_total = {}
for corpus_file in os.listdir(corpus_path):
tmp_data = pd.read_json(os.path.join(corpus_path, corpus_file), lines=True)
for index, i in tmp_data.iterrows():
corpus_total[i['docid']] = i['text']
topics_total = {}
for topics_file in os.listdir(os.path.join(file_path, 'topics')):
if 'test' in topics_file:
continue
tmp_data = pd.read_csv(os.path.join(file_path, 'topics', topics_file), sep='\t', names=['qid', 'query'])
for index, i in tmp_data.iterrows():
topics_total[i['qid']] = i['query']
qrels = defaultdict(dict)
texts = defaultdict(dict)
docs = []
for qrels_file in os.listdir(os.path.join(file_path, 'qrels')):
if 'test' in qrels_file:
continue
tmp_data = pd.read_csv(os.path.join(file_path, 'qrels', qrels_file), sep='\t',
names=['qid', 'Q0', 'docid', 'relevance'])
for i in tqdm(range(len(tmp_data)), colour="green", desc="Indexing:" + qrels_file):
query = topics_total[tmp_data.iloc[i]['qid']]
text = corpus_total[tmp_data.iloc[i]['docid']]
rel = tmp_data.iloc[i]['relevance']
d = {
"id": get_uuid()
}
tokenize(d, text, 'english')
docs.append(d)
texts[d["id"]] = text
qrels[query][d["id"]] = int(rel)
if len(docs) >= 32:
docs = self.embedding(docs)
ELASTICSEARCH.bulk(docs, search.index_name(index_name))
docs = []
docs = self.embedding(docs)
ELASTICSEARCH.bulk(docs, search.index_name(index_name))
return qrels, texts
def save_results(self, qrels, run, texts, dataset, file_path):
keep_result = []
run_keys = list(run.keys())
for run_i in tqdm(range(len(run_keys)), desc="Calculating ndcg@10 for single query"):
key = run_keys[run_i]
keep_result.append({'query': key, 'qrel': qrels[key], 'run': run[key],
'ndcg@10': evaluate({key: qrels[key]}, {key: run[key]}, "ndcg@10")})
keep_result = sorted(keep_result, key=lambda kk: kk['ndcg@10'])
with open(os.path.join(file_path, dataset + 'result.md'), 'w', encoding='utf-8') as f:
f.write('## Score For Every Query\n')
for keep_result_i in keep_result:
f.write('### query: ' + keep_result_i['query'] + ' ndcg@10:' + str(keep_result_i['ndcg@10']) + '\n')
scores = [[i[0], i[1]] for i in keep_result_i['run'].items()]
scores = sorted(scores, key=lambda kk: kk[1])
for score in scores[:10]:
f.write('- text: ' + str(texts[score[0]]) + '\t qrel: ' + str(score[1]) + '\n')
print(os.path.join(file_path, dataset + '_result.md'), 'Saved!')
def __call__(self, dataset, file_path, miracl_corpus=''):
if dataset == "ms_marco_v1.1":
qrels, texts = self.ms_marco_index(file_path, "benchmark_ms_marco_v1.1")
run = self._get_retrieval(qrels, "benchmark_ms_marco_v1.1")
print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"]))
self.save_results(qrels, run, texts, dataset, file_path)
if dataset == "trivia_qa":
qrels, texts = self.trivia_qa_index(file_path, "benchmark_trivia_qa")
run = self._get_retrieval(qrels, "benchmark_trivia_qa")
print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"]))
self.save_results(qrels, run, texts, dataset, file_path)
if dataset == "miracl":
for lang in ['ar', 'bn', 'de', 'en', 'es', 'fa', 'fi', 'fr', 'hi', 'id', 'ja', 'ko', 'ru', 'sw', 'te', 'th',
'yo', 'zh']:
if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang)):
print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang) + ' not found!')
continue
if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels')):
print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels') + 'not found!')
continue
if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics')):
print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics') + 'not found!')
continue
if not os.path.isdir(os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang)):
print('Directory: ' + os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang) + ' not found!')
continue
qrels, texts = self.miracl_index(os.path.join(file_path, 'miracl-v1.0-' + lang),
os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang),
"benchmark_miracl_" + lang)
run = self._get_retrieval(qrels, "benchmark_miracl_" + lang)
print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"]))
self.save_results(qrels, run, texts, dataset, file_path)
if __name__ == '__main__':
print('*****************RAGFlow Benchmark*****************')
kb_id = input('Please input kb_id:\n')
ex = Benchmark(kb_id)
dataset = input(
'RAGFlow Benchmark Support:\n\tms_marco_v1.1:<https://huggingface.co/datasets/microsoft/ms_marco>\n\ttrivia_qa:<https://huggingface.co/datasets/mandarjoshi/trivia_qa>\n\tmiracl:<https://huggingface.co/datasets/miracl/miracl>\nPlease input dataset choice:\n')
if dataset in ['ms_marco_v1.1', 'trivia_qa']:
if dataset == "ms_marco_v1.1":
print("Notice: Please provide the ms_marco_v1.1 dataset only. ms_marco_v2.1 is not supported!")
dataset_path = input('Please input ' + dataset + ' dataset path:\n')
ex(dataset, dataset_path)
elif dataset == 'miracl':
dataset_path = input('Please input ' + dataset + ' dataset path:\n')
corpus_path = input('Please input ' + dataset + '-corpus dataset path:\n')
ex(dataset, dataset_path, miracl_corpus=corpus_path)
else:
print("Dataset: ", dataset, "not supported!")
|