File size: 11,240 Bytes
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e10ed78
aeb6dbc
bf00d96
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf00d96
 
 
 
 
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e10ed78
 
aeb6dbc
 
 
 
bf00d96
 
 
aeb6dbc
 
 
bf00d96
aeb6dbc
bf00d96
aeb6dbc
bf00d96
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e10ed78
 
 
 
 
 
 
 
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e10ed78
 
 
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82bdd9f
aeb6dbc
 
 
ac8ea20
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac8ea20
 
 
 
 
 
 
 
 
 
 
aeb6dbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
from api.db.services.user_service import TenantService
from api.settings import database_logger
from rag.llm import EmbeddingModel, CvModel, ChatModel, RerankModel, Seq2txtModel, TTSModel
from api.db import LLMType
from api.db.db_models import DB
from api.db.db_models import LLMFactories, LLM, TenantLLM
from api.db.services.common_service import CommonService


class LLMFactoriesService(CommonService):
    model = LLMFactories


class LLMService(CommonService):
    model = LLM


class TenantLLMService(CommonService):
    model = TenantLLM

    @classmethod
    @DB.connection_context()
    def get_api_key(cls, tenant_id, model_name):
        arr = model_name.split("@")
        if len(arr) < 2:
            objs = cls.query(tenant_id=tenant_id, llm_name=model_name)
        else:
            objs = cls.query(tenant_id=tenant_id, llm_name=arr[0], llm_factory=arr[1])
        if not objs:
            return
        return objs[0]

    @classmethod
    @DB.connection_context()
    def get_my_llms(cls, tenant_id):
        fields = [
            cls.model.llm_factory,
            LLMFactories.logo,
            LLMFactories.tags,
            cls.model.model_type,
            cls.model.llm_name,
            cls.model.used_tokens
        ]
        objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where(
            cls.model.tenant_id == tenant_id, ~cls.model.api_key.is_null()).dicts()

        return list(objs)

    @classmethod
    @DB.connection_context()
    def model_instance(cls, tenant_id, llm_type,
                       llm_name=None, lang="Chinese"):
        e, tenant = TenantService.get_by_id(tenant_id)
        if not e:
            raise LookupError("Tenant not found")

        if llm_type == LLMType.EMBEDDING.value:
            mdlnm = tenant.embd_id if not llm_name else llm_name
        elif llm_type == LLMType.SPEECH2TEXT.value:
            mdlnm = tenant.asr_id
        elif llm_type == LLMType.IMAGE2TEXT.value:
            mdlnm = tenant.img2txt_id if not llm_name else llm_name
        elif llm_type == LLMType.CHAT.value:
            mdlnm = tenant.llm_id if not llm_name else llm_name
        elif llm_type == LLMType.RERANK:
            mdlnm = tenant.rerank_id if not llm_name else llm_name
        elif llm_type == LLMType.TTS:
            mdlnm = tenant.tts_id if not llm_name else llm_name
        else:
            assert False, "LLM type error"

        model_config = cls.get_api_key(tenant_id, mdlnm)
        tmp = mdlnm.split("@")
        fid = None if len(tmp) < 2 else tmp[1]
        mdlnm = tmp[0]
        if model_config: model_config = model_config.to_dict()
        if not model_config:
            if llm_type in [LLMType.EMBEDDING, LLMType.RERANK]:
                llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid)
                if llm and llm[0].fid in ["Youdao", "FastEmbed", "BAAI"]:
                    model_config = {"llm_factory": llm[0].fid, "api_key":"", "llm_name": mdlnm, "api_base": ""}
            if not model_config:
                if mdlnm == "flag-embedding":
                    model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "",
                                "llm_name": llm_name, "api_base": ""}
                else:
                    if not mdlnm:
                        raise LookupError(f"Type of {llm_type} model is not set.")
                    raise LookupError("Model({}) not authorized".format(mdlnm))

        if llm_type == LLMType.EMBEDDING.value:
            if model_config["llm_factory"] not in EmbeddingModel:
                return
            return EmbeddingModel[model_config["llm_factory"]](
                model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])

        if llm_type == LLMType.RERANK:
            if model_config["llm_factory"] not in RerankModel:
                return
            return RerankModel[model_config["llm_factory"]](
                model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])

        if llm_type == LLMType.IMAGE2TEXT.value:
            if model_config["llm_factory"] not in CvModel:
                return
            return CvModel[model_config["llm_factory"]](
                model_config["api_key"], model_config["llm_name"], lang,
                base_url=model_config["api_base"]
            )

        if llm_type == LLMType.CHAT.value:
            if model_config["llm_factory"] not in ChatModel:
                return
            return ChatModel[model_config["llm_factory"]](
                model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])

        if llm_type == LLMType.SPEECH2TEXT:
            if model_config["llm_factory"] not in Seq2txtModel:
                return
            return Seq2txtModel[model_config["llm_factory"]](
                model_config["api_key"], model_config["llm_name"], lang,
                base_url=model_config["api_base"]
            )
        if llm_type == LLMType.TTS:
            if model_config["llm_factory"] not in TTSModel:
                return
            return TTSModel[model_config["llm_factory"]](
                model_config["api_key"],
                model_config["llm_name"],
                base_url=model_config["api_base"],
            )

    @classmethod
    @DB.connection_context()
    def increase_usage(cls, tenant_id, llm_type, used_tokens, llm_name=None):
        e, tenant = TenantService.get_by_id(tenant_id)
        if not e:
            raise LookupError("Tenant not found")

        if llm_type == LLMType.EMBEDDING.value:
            mdlnm = tenant.embd_id
        elif llm_type == LLMType.SPEECH2TEXT.value:
            mdlnm = tenant.asr_id
        elif llm_type == LLMType.IMAGE2TEXT.value:
            mdlnm = tenant.img2txt_id
        elif llm_type == LLMType.CHAT.value:
            mdlnm = tenant.llm_id if not llm_name else llm_name
        elif llm_type == LLMType.RERANK:
            mdlnm = tenant.rerank_id if not llm_name else llm_name
        elif llm_type == LLMType.TTS:
            mdlnm = tenant.tts_id if not llm_name else llm_name
        else:
            assert False, "LLM type error"

        num = 0
        try:
            for u in cls.query(tenant_id = tenant_id, llm_name=mdlnm):
                num += cls.model.update(used_tokens = u.used_tokens + used_tokens)\
                    .where(cls.model.tenant_id == tenant_id, cls.model.llm_name == mdlnm)\
                    .execute()
        except Exception as e:
            pass
        return num

    @classmethod
    @DB.connection_context()
    def get_openai_models(cls):
        objs = cls.model.select().where(
            (cls.model.llm_factory == "OpenAI"),
            ~(cls.model.llm_name == "text-embedding-3-small"),
            ~(cls.model.llm_name == "text-embedding-3-large")
        ).dicts()
        return list(objs)


class LLMBundle(object):
    def __init__(self, tenant_id, llm_type, llm_name=None, lang="Chinese"):
        self.tenant_id = tenant_id
        self.llm_type = llm_type
        self.llm_name = llm_name
        self.mdl = TenantLLMService.model_instance(
            tenant_id, llm_type, llm_name, lang=lang)
        assert self.mdl, "Can't find mole for {}/{}/{}".format(
            tenant_id, llm_type, llm_name)
        self.max_length = 8192
        for lm in LLMService.query(llm_name=llm_name):
            self.max_length = lm.max_tokens
            break
    
    def encode(self, texts: list, batch_size=32):
        emd, used_tokens = self.mdl.encode(texts, batch_size)
        if not TenantLLMService.increase_usage(
                self.tenant_id, self.llm_type, used_tokens):
            database_logger.error(
                "Can't update token usage for {}/EMBEDDING".format(self.tenant_id))
        return emd, used_tokens

    def encode_queries(self, query: str):
        emd, used_tokens = self.mdl.encode_queries(query)
        if not TenantLLMService.increase_usage(
                self.tenant_id, self.llm_type, used_tokens):
            database_logger.error(
                "Can't update token usage for {}/EMBEDDING".format(self.tenant_id))
        return emd, used_tokens

    def similarity(self, query: str, texts: list):
        sim, used_tokens = self.mdl.similarity(query, texts)
        if not TenantLLMService.increase_usage(
                self.tenant_id, self.llm_type, used_tokens):
            database_logger.error(
                "Can't update token usage for {}/RERANK".format(self.tenant_id))
        return sim, used_tokens

    def describe(self, image, max_tokens=300):
        txt, used_tokens = self.mdl.describe(image, max_tokens)
        if not TenantLLMService.increase_usage(
                self.tenant_id, self.llm_type, used_tokens):
            database_logger.error(
                "Can't update token usage for {}/IMAGE2TEXT".format(self.tenant_id))
        return txt

    def transcription(self, audio):
        txt, used_tokens = self.mdl.transcription(audio)
        if not TenantLLMService.increase_usage(
                self.tenant_id, self.llm_type, used_tokens):
            database_logger.error(
                "Can't update token usage for {}/SEQUENCE2TXT".format(self.tenant_id))
        return txt

    def tts(self, text):
        for chunk in self.mdl.tts(text):
            if isinstance(chunk,int):
                if not TenantLLMService.increase_usage(
                    self.tenant_id, self.llm_type, chunk, self.llm_name):
                        database_logger.error(
                            "Can't update token usage for {}/TTS".format(self.tenant_id))
                return
            yield chunk     

    
    def chat(self, system, history, gen_conf):
        txt, used_tokens = self.mdl.chat(system, history, gen_conf)
        if not TenantLLMService.increase_usage(
                self.tenant_id, self.llm_type, used_tokens, self.llm_name):
            database_logger.error(
                "Can't update token usage for {}/CHAT".format(self.tenant_id))
        return txt

    def chat_streamly(self, system, history, gen_conf):
        for txt in self.mdl.chat_streamly(system, history, gen_conf):
            if isinstance(txt, int):
                if not TenantLLMService.increase_usage(
                        self.tenant_id, self.llm_type, txt, self.llm_name):
                    database_logger.error(
                        "Can't update token usage for {}/CHAT".format(self.tenant_id))
                return
            yield txt