File size: 13,806 Bytes
633d85b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172caf6
633d85b
 
172caf6
633d85b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172caf6
 
633d85b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172caf6
633d85b
 
172caf6
633d85b
 
 
 
 
 
 
172caf6
 
 
 
 
633d85b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172caf6
 
633d85b
 
172caf6
 
 
633d85b
 
 
 
172caf6
 
 
633d85b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172caf6
633d85b
 
 
 
 
 
 
 
 
 
 
 
 
172caf6
633d85b
 
 
 
 
 
172caf6
633d85b
 
 
172caf6
633d85b
172caf6
 
 
633d85b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172caf6
633d85b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
from flask import request

from api.db import StatusEnum
from api.db.db_models import TenantLLM
from api.db.services.dialog_service import DialogService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMService, TenantLLMService
from api.db.services.user_service import TenantService
from api.settings import RetCode
from api.utils import get_uuid
from api.utils.api_utils import get_data_error_result, token_required
from api.utils.api_utils import get_json_result


@manager.route('/save', methods=['POST'])
@token_required
def save(tenant_id):
    req = request.json
    # dataset
    if req.get("knowledgebases") == []:
        return get_data_error_result(retmsg="knowledgebases can not be empty list")
    kb_list = []
    if req.get("knowledgebases"):
        for kb in req.get("knowledgebases"):
            if not kb["id"]:
                return get_data_error_result(retmsg="knowledgebase needs id")
            if not KnowledgebaseService.query(id=kb["id"], tenant_id=tenant_id):
                return get_data_error_result(retmsg="you do not own the knowledgebase")
            # if not DocumentService.query(kb_id=kb["id"]):
            #  return get_data_error_result(retmsg="There is a invalid knowledgebase")
            kb_list.append(kb["id"])
    req["kb_ids"] = kb_list
    # llm
    llm = req.get("llm")
    if llm:
        if "model_name" in llm:
            req["llm_id"] = llm.pop("model_name")
        req["llm_setting"] = req.pop("llm")
    e, tenant = TenantService.get_by_id(tenant_id)
    if not e:
        return get_data_error_result(retmsg="Tenant not found!")
    # prompt
    prompt = req.get("prompt")
    key_mapping = {"parameters": "variables",
                   "prologue": "opener",
                   "quote": "show_quote",
                   "system": "prompt",
                   "rerank_id": "rerank_model",
                   "vector_similarity_weight": "keywords_similarity_weight"}
    key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
    if prompt:
        for new_key, old_key in key_mapping.items():
            if old_key in prompt:
                prompt[new_key] = prompt.pop(old_key)
        for key in key_list:
            if key in prompt:
                req[key] = prompt.pop(key)
        req["prompt_config"] = req.pop("prompt")
    # create
    if "id" not in req:
        # dataset
        if not kb_list:
            return get_data_error_result(retmsg="knowledgebases are required!")
        # init
        req["id"] = get_uuid()
        req["description"] = req.get("description", "A helpful Assistant")
        req["icon"] = req.get("avatar", "")
        req["top_n"] = req.get("top_n", 6)
        req["top_k"] = req.get("top_k", 1024)
        req["rerank_id"] = req.get("rerank_id", "")
        if req.get("llm_id"):
            if not TenantLLMService.query(llm_name=req["llm_id"]):
                return get_data_error_result(retmsg="the model_name does not exist.")
        else:
            req["llm_id"] = tenant.llm_id
        if not req.get("name"):
            return get_data_error_result(retmsg="name is required.")
        if DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value):
            return get_data_error_result(retmsg="Duplicated assistant name in creating dataset.")
        # tenant_id
        if req.get("tenant_id"):
            return get_data_error_result(retmsg="tenant_id must not be provided.")
        req["tenant_id"] = tenant_id
        # prompt more parameter
        default_prompt = {
            "system": """你是一个智能助手,请总结知识库的内容来回答问题,请列举知识库中的数据详细回答。当所有知识库内容都与问题无关时,你的回答必须包括“知识库中未找到您要的答案!”这句话。回答需要考虑聊天历史。

                以下是知识库:

                {knowledge}

                以上是知识库。""",
            "prologue": "您好,我是您的助手小樱,长得可爱又善良,can I help you?",
            "parameters": [
                {"key": "knowledge", "optional": False}
            ],
            "empty_response": "Sorry! 知识库中未找到相关内容!"
        }
        key_list_2 = ["system", "prologue", "parameters", "empty_response"]
        if "prompt_config" not in req:
            req['prompt_config'] = {}
        for key in key_list_2:
            temp = req['prompt_config'].get(key)
            if not temp:
                req['prompt_config'][key] = default_prompt[key]
        for p in req['prompt_config']["parameters"]:
            if p["optional"]:
                continue
            if req['prompt_config']["system"].find("{%s}" % p["key"]) < 0:
                return get_data_error_result(
                    retmsg="Parameter '{}' is not used".format(p["key"]))
        # save
        if not DialogService.save(**req):
            return get_data_error_result(retmsg="Fail to new an assistant!")
        # response
        e, res = DialogService.get_by_id(req["id"])
        if not e:
            return get_data_error_result(retmsg="Fail to new an assistant!")
        res = res.to_json()
        renamed_dict = {}
        for key, value in res["prompt_config"].items():
            new_key = key_mapping.get(key, key)
            renamed_dict[new_key] = value
        res["prompt"] = renamed_dict
        del res["prompt_config"]
        new_dict = {"similarity_threshold": res["similarity_threshold"],
                    "keywords_similarity_weight": res["vector_similarity_weight"],
                    "top_n": res["top_n"],
                    "rerank_model": res['rerank_id']}
        res["prompt"].update(new_dict)
        for key in key_list:
            del res[key]
        res["llm"] = res.pop("llm_setting")
        res["llm"]["model_name"] = res.pop("llm_id")
        del res["kb_ids"]
        res["knowledgebases"] = req["knowledgebases"]
        res["avatar"] = res.pop("icon")
        return get_json_result(data=res)
    else:
        # authorization
        if not DialogService.query(tenant_id=tenant_id, id=req["id"], status=StatusEnum.VALID.value):
            return get_json_result(data=False, retmsg='You do not own the assistant', retcode=RetCode.OPERATING_ERROR)
        # prompt
        if not req["id"]:
            return get_data_error_result(retmsg="id can not be empty")
        e, res = DialogService.get_by_id(req["id"])
        res = res.to_json()
        if "llm_id" in req:
            if not TenantLLMService.query(llm_name=req["llm_id"]):
                return get_data_error_result(retmsg="the model_name does not exist.")
        if "name" in req:
            if not req.get("name"):
                return get_data_error_result(retmsg="name is not empty.")
            if req["name"].lower() != res["name"].lower() \
                    and len(
                DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value)) > 0:
                return get_data_error_result(retmsg="Duplicated assistant name in updating dataset.")
        if "prompt_config" in req:
            res["prompt_config"].update(req["prompt_config"])
            for p in res["prompt_config"]["parameters"]:
                if p["optional"]:
                    continue
                if res["prompt_config"]["system"].find("{%s}" % p["key"]) < 0:
                    return get_data_error_result(retmsg="Parameter '{}' is not used".format(p["key"]))
        if "llm_setting" in req:
            res["llm_setting"].update(req["llm_setting"])
        req["prompt_config"] = res["prompt_config"]
        req["llm_setting"] = res["llm_setting"]
        # avatar
        if "avatar" in req:
            req["icon"] = req.pop("avatar")
        assistant_id = req.pop("id")
        if "knowledgebases" in req:
            req.pop("knowledgebases")
        if not DialogService.update_by_id(assistant_id, req):
            return get_data_error_result(retmsg="Assistant not found!")
        return get_json_result(data=True)


@manager.route('/delete', methods=['DELETE'])
@token_required
def delete(tenant_id):
    req = request.args
    if "id" not in req:
        return get_data_error_result(retmsg="id is required")
    id = req['id']
    if not DialogService.query(tenant_id=tenant_id, id=id, status=StatusEnum.VALID.value):
        return get_json_result(data=False, retmsg='you do not own the assistant.', retcode=RetCode.OPERATING_ERROR)

    temp_dict = {"status": StatusEnum.INVALID.value}
    DialogService.update_by_id(req["id"], temp_dict)
    return get_json_result(data=True)


@manager.route('/get', methods=['GET'])
@token_required
def get(tenant_id):
    req = request.args
    if "id" in req:
        id = req["id"]
        ass = DialogService.query(tenant_id=tenant_id, id=id, status=StatusEnum.VALID.value)
        if not ass:
            return get_json_result(data=False, retmsg='You do not own the assistant.', retcode=RetCode.OPERATING_ERROR)
        if "name" in req:
            name = req["name"]
            if ass[0].name != name:
                return get_json_result(data=False, retmsg='name does not match id.', retcode=RetCode.OPERATING_ERROR)
        res = ass[0].to_json()
    else:
        if "name" in req:
            name = req["name"]
            ass = DialogService.query(name=name, tenant_id=tenant_id, status=StatusEnum.VALID.value)
            if not ass:
                return get_json_result(data=False, retmsg='You do not own the assistant.',
                                       retcode=RetCode.OPERATING_ERROR)
            res = ass[0].to_json()
        else:
            return get_data_error_result(retmsg="At least one of `id` or `name` must be provided.")
    renamed_dict = {}
    key_mapping = {"parameters": "variables",
                   "prologue": "opener",
                   "quote": "show_quote",
                   "system": "prompt",
                   "rerank_id": "rerank_model",
                   "vector_similarity_weight": "keywords_similarity_weight"}
    key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
    for key, value in res["prompt_config"].items():
        new_key = key_mapping.get(key, key)
        renamed_dict[new_key] = value
    res["prompt"] = renamed_dict
    del res["prompt_config"]
    new_dict = {"similarity_threshold": res["similarity_threshold"],
                "keywords_similarity_weight": res["vector_similarity_weight"],
                "top_n": res["top_n"],
                "rerank_model": res['rerank_id']}
    res["prompt"].update(new_dict)
    for key in key_list:
        del res[key]
    res["llm"] = res.pop("llm_setting")
    res["llm"]["model_name"] = res.pop("llm_id")
    kb_list = []
    for kb_id in res["kb_ids"]:
        kb = KnowledgebaseService.query(id=kb_id)
        kb_list.append(kb[0].to_json())
    del res["kb_ids"]
    res["knowledgebases"] = kb_list
    res["avatar"] = res.pop("icon")
    return get_json_result(data=res)


@manager.route('/list', methods=['GET'])
@token_required
def list_assistants(tenant_id):
    assts = DialogService.query(
        tenant_id=tenant_id,
        status=StatusEnum.VALID.value,
        reverse=True,
        order_by=DialogService.model.create_time)
    assts = [d.to_dict() for d in assts]
    list_assts = []
    renamed_dict = {}
    key_mapping = {"parameters": "variables",
                   "prologue": "opener",
                   "quote": "show_quote",
                   "system": "prompt",
                   "rerank_id": "rerank_model",
                   "vector_similarity_weight": "keywords_similarity_weight"}
    key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
    for res in assts:
        for key, value in res["prompt_config"].items():
            new_key = key_mapping.get(key, key)
            renamed_dict[new_key] = value
        res["prompt"] = renamed_dict
        del res["prompt_config"]
        new_dict = {"similarity_threshold": res["similarity_threshold"],
                    "keywords_similarity_weight": res["vector_similarity_weight"],
                    "top_n": res["top_n"],
                    "rerank_model": res['rerank_id']}
        res["prompt"].update(new_dict)
        for key in key_list:
            del res[key]
        res["llm"] = res.pop("llm_setting")
        res["llm"]["model_name"] = res.pop("llm_id")
        kb_list = []
        for kb_id in res["kb_ids"]:
            kb = KnowledgebaseService.query(id=kb_id)
            kb_list.append(kb[0].to_json())
        del res["kb_ids"]
        res["knowledgebases"] = kb_list
        res["avatar"] = res.pop("icon")
        list_assts.append(res)
    return get_json_result(data=list_assts)