File size: 14,249 Bytes
6054f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47ec63e
 
6054f54
47ec63e
6054f54
 
47ec63e
 
 
 
 
 
 
6054f54
 
 
47ec63e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b691127
6054f54
47ec63e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6054f54
47ec63e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import json
import logging
from collections import defaultdict
from copy import deepcopy
import json_repair
import pandas as pd

from api.utils import get_uuid
from graphrag.query_analyze_prompt import PROMPTS
from graphrag.utils import get_entity_type2sampels, get_llm_cache, set_llm_cache, get_relation
from rag.utils import num_tokens_from_string
from rag.utils.doc_store_conn import OrderByExpr

from rag.nlp.search import Dealer, index_name


class KGSearch(Dealer):
    def _chat(self, llm_bdl, system, history, gen_conf):
        response = get_llm_cache(llm_bdl.llm_name, system, history, gen_conf)
        if response:
            return response
        response = llm_bdl.chat(system, history, gen_conf)
        if response.find("**ERROR**") >= 0:
            raise Exception(response)
        set_llm_cache(llm_bdl.llm_name, system, response, history, gen_conf)
        return response

    def query_rewrite(self, llm, question, idxnms, kb_ids):
        ty2ents = get_entity_type2sampels(idxnms, kb_ids)
        hint_prompt = PROMPTS["minirag_query2kwd"].format(query=question,
                                                          TYPE_POOL=json.dumps(ty2ents, ensure_ascii=False, indent=2))
        result = self._chat(llm, hint_prompt, [{"role": "user", "content": "Output:"}], {"temperature": .5})
        try:
            keywords_data = json_repair.loads(result)
            type_keywords = keywords_data.get("answer_type_keywords", [])
            entities_from_query = keywords_data.get("entities_from_query", [])[:5]
            return type_keywords, entities_from_query
        except json_repair.JSONDecodeError:
            try:
                result = result.replace(hint_prompt[:-1], '').replace('user', '').replace('model', '').strip()
                result = '{' + result.split('{')[1].split('}')[0] + '}'
                keywords_data = json_repair.loads(result)
                type_keywords = keywords_data.get("answer_type_keywords", [])
                entities_from_query = keywords_data.get("entities_from_query", [])[:5]
                return type_keywords, entities_from_query
            # Handle parsing error
            except Exception as e:
                logging.exception(f"JSON parsing error: {result} -> {e}")
                raise e

    def _ent_info_from_(self, es_res, sim_thr=0.3):
        res = {}
        es_res = self.dataStore.getFields(es_res, ["content_with_weight", "_score", "entity_kwd", "rank_flt",
                                                   "n_hop_with_weight"])
        for _, ent in es_res.items():
            if float(ent.get("_score", 0)) < sim_thr:
                continue
            if isinstance(ent["entity_kwd"], list):
                ent["entity_kwd"] = ent["entity_kwd"][0]
            res[ent["entity_kwd"]] = {
                "sim": float(ent.get("_score", 0)),
                "pagerank": float(ent.get("rank_flt", 0)),
                "n_hop_ents": json.loads(ent.get("n_hop_with_weight", "[]")),
                "description": ent.get("content_with_weight", "{}")
            }
        return res

    def _relation_info_from_(self, es_res, sim_thr=0.3):
        res = {}
        es_res = self.dataStore.getFields(es_res, ["content_with_weight", "_score", "from_entity_kwd", "to_entity_kwd",
                                                   "weight_int"])
        for _, ent in es_res.items():
            if float(ent["_score"]) < sim_thr:
                continue
            f, t = sorted([ent["from_entity_kwd"], ent["to_entity_kwd"]])
            if isinstance(f, list):
                f = f[0]
            if isinstance(t, list):
                t = t[0]
            res[(f, t)] = {
                "sim": float(ent["_score"]),
                "pagerank": float(ent.get("weight_int", 0)),
                "description": ent["content_with_weight"]
            }
        return res

    def get_relevant_ents_by_keywords(self, keywords, filters, idxnms, kb_ids, emb_mdl, sim_thr=0.3, N=56):
        if not keywords:
            return {}
        filters = deepcopy(filters)
        filters["knowledge_graph_kwd"] = "entity"
        matchDense = self.get_vector(", ".join(keywords), emb_mdl, 1024, sim_thr)
        es_res = self.dataStore.search(["content_with_weight", "entity_kwd", "rank_flt"], [], filters, [matchDense],
                                       OrderByExpr(), 0, N,
                                       idxnms, kb_ids)
        return self._ent_info_from_(es_res, sim_thr)

    def get_relevant_relations_by_txt(self, txt, filters, idxnms, kb_ids, emb_mdl, sim_thr=0.3, N=56):
        if not txt:
            return {}
        filters = deepcopy(filters)
        filters["knowledge_graph_kwd"] = "relation"
        matchDense = self.get_vector(txt, emb_mdl, 1024, sim_thr)
        es_res = self.dataStore.search(
            ["content_with_weight", "_score", "from_entity_kwd", "to_entity_kwd", "weight_int"],
            [], filters, [matchDense], OrderByExpr(), 0, N, idxnms, kb_ids)
        return self._relation_info_from_(es_res, sim_thr)

    def get_relevant_ents_by_types(self, types, filters, idxnms, kb_ids, N=56):
        if not types:
            return {}
        filters = deepcopy(filters)
        filters["knowledge_graph_kwd"] = "entity"
        filters["entity_type_kwd"] = types
        ordr = OrderByExpr()
        ordr.desc("rank_flt")
        es_res = self.dataStore.search(["entity_kwd", "rank_flt"], [], filters, [], ordr, 0, N,
                                       idxnms, kb_ids)
        return self._ent_info_from_(es_res, 0)

    def retrieval(self, question: str,
               tenant_ids: str | list[str],
               kb_ids: list[str],
               emb_mdl,
               llm,
               max_token: int = 8196,
               ent_topn: int = 6,
               rel_topn: int = 6,
               comm_topn: int = 1,
               ent_sim_threshold: float = 0.3,
               rel_sim_threshold: float = 0.3,
               ):
        qst = question
        filters = self.get_filters({"kb_ids": kb_ids})
        if isinstance(tenant_ids, str):
            tenant_ids = tenant_ids.split(",")
        idxnms = [index_name(tid) for tid in tenant_ids]
        ty_kwds = []
        ents = []
        try:
            ty_kwds, ents = self.query_rewrite(llm, qst, [index_name(tid) for tid in tenant_ids], kb_ids)
            logging.info(f"Q: {qst}, Types: {ty_kwds}, Entities: {ents}")
        except Exception as e:
            logging.exception(e)
            ents = [qst]
            pass

        ents_from_query = self.get_relevant_ents_by_keywords(ents, filters, idxnms, kb_ids, emb_mdl, ent_sim_threshold)
        ents_from_types = self.get_relevant_ents_by_types(ty_kwds, filters, idxnms, kb_ids, 10000)
        rels_from_txt = self.get_relevant_relations_by_txt(qst, filters, idxnms, kb_ids, emb_mdl, rel_sim_threshold)
        nhop_pathes = defaultdict(dict)
        for _, ent in ents_from_query.items():
            nhops = ent.get("n_hop_ents", [])
            for nbr in nhops:
                path = nbr["path"]
                wts = nbr["weights"]
                for i in range(len(path) - 1):
                    f, t = path[i], path[i + 1]
                    if (f, t) in nhop_pathes:
                        nhop_pathes[(f, t)]["sim"] += ent["sim"] / (2 + i)
                    else:
                        nhop_pathes[(f, t)]["sim"] = ent["sim"] / (2 + i)
                    nhop_pathes[(f, t)]["pagerank"] = wts[i]

        logging.info("Retrieved entities: {}".format(list(ents_from_query.keys())))
        logging.info("Retrieved relations: {}".format(list(rels_from_txt.keys())))
        logging.info("Retrieved entities from types({}): {}".format(ty_kwds, list(ents_from_types.keys())))
        logging.info("Retrieved N-hops: {}".format(list(nhop_pathes.keys())))

        # P(E|Q) => P(E) * P(Q|E) => pagerank * sim
        for ent in ents_from_types.keys():
            if ent not in ents_from_query:
                continue
            ents_from_query[ent]["sim"] *= 2

        for (f, t) in rels_from_txt.keys():
            pair = tuple(sorted([f, t]))
            s = 0
            if pair in nhop_pathes:
                s += nhop_pathes[pair]["sim"]
                del nhop_pathes[pair]
            if f in ents_from_types:
                s += 1
            if t in ents_from_types:
                s += 1
            rels_from_txt[(f, t)]["sim"] *= s + 1

        # This is for the relations from n-hop but not by query search
        for (f, t) in nhop_pathes.keys():
            s = 0
            if f in ents_from_types:
                s += 1
            if t in ents_from_types:
                s += 1
            rels_from_txt[(f, t)] = {
                "sim": nhop_pathes[(f, t)]["sim"] * (s + 1),
                "pagerank": nhop_pathes[(f, t)]["pagerank"]
            }

        ents_from_query = sorted(ents_from_query.items(), key=lambda x: x[1]["sim"] * x[1]["pagerank"], reverse=True)[
                          :ent_topn]
        rels_from_txt = sorted(rels_from_txt.items(), key=lambda x: x[1]["sim"] * x[1]["pagerank"], reverse=True)[
                        :rel_topn]

        ents = []
        relas = []
        for n, ent in ents_from_query:
            ents.append({
                "Entity": n,
                "Score": "%.2f" % (ent["sim"] * ent["pagerank"]),
                "Description": json.loads(ent["description"]).get("description", "")
            })
            max_token -= num_tokens_from_string(str(ents[-1]))
            if max_token <= 0:
                ents = ents[:-1]
                break

        for (f, t), rel in rels_from_txt:
            if not rel.get("description"):
                for tid in tenant_ids:
                    rela = get_relation(tid, kb_ids, f, t)
                    if rela:
                        break
                else:
                    continue
                rel["description"] = rela["description"]
            relas.append({
                "From Entity": f,
                "To Entity": t,
                "Score": "%.2f" % (rel["sim"] * rel["pagerank"]),
                "Description": json.loads(ent["description"]).get("description", "")
            })
            max_token -= num_tokens_from_string(str(relas[-1]))
            if max_token <= 0:
                relas = relas[:-1]
                break

        if ents:
            ents = "\n-Entities-\n{}".format(pd.DataFrame(ents).to_csv())
        else:
            ents = ""
        if relas:
            relas = "\n-Relations-\n{}".format(pd.DataFrame(relas).to_csv())
        else:
            relas = ""

        return {
                "chunk_id": get_uuid(),
                "content_ltks": "",
                "content_with_weight": ents + relas + self._community_retrival_([n for n, _ in ents_from_query], filters, kb_ids, idxnms,
                                                        comm_topn, max_token),
                "doc_id": "",
                "docnm_kwd": "Related content in Knowledge Graph",
                "kb_id": kb_ids,
                "important_kwd": [],
                "image_id": "",
                "similarity": 1.,
                "vector_similarity": 1.,
                "term_similarity": 0,
                "vector": [],
                "positions": [],
            }

    def _community_retrival_(self, entities, condition, kb_ids, idxnms, topn, max_token):
        ## Community retrieval
        fields = ["docnm_kwd", "content_with_weight"]
        odr = OrderByExpr()
        odr.desc("weight_flt")
        fltr = deepcopy(condition)
        fltr["knowledge_graph_kwd"] = "community_report"
        fltr["entities_kwd"] = entities
        comm_res = self.dataStore.search(fields, [], fltr, [],
                                         OrderByExpr(), 0, topn, idxnms, kb_ids)
        comm_res_fields = self.dataStore.getFields(comm_res, fields)
        txts = []
        for ii, (_, row) in enumerate(comm_res_fields.items()):
            obj = json.loads(row["content_with_weight"])
            txts.append("# {}. {}\n## Content\n{}\n## Evidences\n{}\n".format(
                ii + 1, row["docnm_kwd"], obj["report"], obj["evidences"]))
            max_token -= num_tokens_from_string(str(txts[-1]))

        if not txts:
            return ""
        return "\n-Community Report-\n" + "\n".join(txts)


if __name__ == "__main__":
    from api import settings
    import argparse
    from api.db import LLMType
    from api.db.services.knowledgebase_service import KnowledgebaseService
    from api.db.services.llm_service import LLMBundle
    from api.db.services.user_service import TenantService
    from rag.nlp import search

    settings.init_settings()
    parser = argparse.ArgumentParser()
    parser.add_argument('-t', '--tenant_id', default=False, help="Tenant ID", action='store', required=True)
    parser.add_argument('-d', '--kb_id', default=False, help="Knowledge base ID", action='store', required=True)
    parser.add_argument('-q', '--question', default=False, help="Question", action='store', required=True)
    args = parser.parse_args()

    kb_id = args.kb_id
    _, tenant = TenantService.get_by_id(args.tenant_id)
    llm_bdl = LLMBundle(args.tenant_id, LLMType.CHAT, tenant.llm_id)
    _, kb = KnowledgebaseService.get_by_id(kb_id)
    embed_bdl = LLMBundle(args.tenant_id, LLMType.EMBEDDING, kb.embd_id)

    kg = KGSearch(settings.docStoreConn)
    print(kg.retrieval({"question": args.question, "kb_ids": [kb_id]},
                    search.index_name(kb.tenant_id), [kb_id], embed_bdl, llm_bdl))