File size: 5,455 Bytes
3079197
484e5ab
3079197
 
 
 
 
 
 
 
 
 
 
 
 
79ada0b
8f39e7a
3079197
 
 
 
 
 
 
328b4c9
8f39e7a
 
3079197
 
8f39e7a
8ee4f9f
8f39e7a
 
8ee4f9f
 
8f39e7a
8ee4f9f
484e5ab
 
3079197
79ada0b
3079197
 
 
 
 
 
 
e32ef75
 
 
3079197
 
0c30cc9
3079197
 
 
 
 
 
 
 
 
 
 
484e5ab
3079197
 
b83edb4
3079197
79ada0b
 
3079197
 
 
 
 
9bf75d4
 
 
 
3079197
 
e06e08c
 
 
3079197
 
 
 
 
79ada0b
 
e32ef75
 
 
 
 
3079197
 
 
e06e08c
3079197
 
 
e32ef75
3079197
 
 
e32ef75
 
3079197
 
79ada0b
e32ef75
 
a8294f2
e32ef75
 
 
a8294f2
e32ef75
 
 
 
79ada0b
 
 
 
 
 
5e0a689
 
 
e06e08c
5e0a689
 
 
 
adb65d7
 
 
 
5e0a689
adb65d7
 
 
5e0a689
 
 
 
adb65d7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
from zhipuai import ZhipuAI
import os
from abc import ABC

import dashscope
from openai import OpenAI
from FlagEmbedding import FlagModel
import torch
import numpy as np
from huggingface_hub import snapshot_download

from api.utils.file_utils import get_project_base_directory
from rag.utils import num_tokens_from_string

try:
    flag_model = FlagModel(os.path.join(
            get_project_base_directory(),
            "rag/res/bge-large-zh-v1.5"),
                           query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
                           use_fp16=torch.cuda.is_available())
except Exception as e:
    flag_model = FlagModel("BAAI/bge-large-zh-v1.5",
                       query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
                       use_fp16=torch.cuda.is_available())


class Base(ABC):
    def __init__(self, key, model_name):
        pass

    def encode(self, texts: list, batch_size=32):
        raise NotImplementedError("Please implement encode method!")

    def encode_queries(self, text: str):
        raise NotImplementedError("Please implement encode method!")


class HuEmbedding(Base):
    def __init__(self, *args, **kwargs):
        """
        If you have trouble downloading HuggingFace models, -_^ this might help!!

        For Linux:
        export HF_ENDPOINT=https://hf-mirror.com

        For Windows:
        Good luck
        ^_-

        """
        self.model = flag_model

    def encode(self, texts: list, batch_size=32):
        texts = [t[:2000] for t in texts]
        token_count = 0
        for t in texts:
            token_count += num_tokens_from_string(t)
        res = []
        for i in range(0, len(texts), batch_size):
            res.extend(self.model.encode(texts[i:i + batch_size]).tolist())
        return np.array(res), token_count

    def encode_queries(self, text: str):
        token_count = num_tokens_from_string(text)
        return self.model.encode_queries([text]).tolist()[0], token_count


class OpenAIEmbed(Base):
    def __init__(self, key, model_name="text-embedding-ada-002", base_url="https://api.openai.com/v1"):
        if not base_url: base_url="https://api.openai.com/v1"
        self.client = OpenAI(api_key=key, base_url=base_url)
        self.model_name = model_name

    def encode(self, texts: list, batch_size=32):
        res = self.client.embeddings.create(input=texts,
                                            model=self.model_name)
        return np.array([d.embedding for d in res.data]
                        ), res.usage.total_tokens

    def encode_queries(self, text):
        res = self.client.embeddings.create(input=[text],
                                            model=self.model_name)
        return np.array(res.data[0].embedding), res.usage.total_tokens


class QWenEmbed(Base):
    def __init__(self, key, model_name="text_embedding_v2", **kwargs):
        dashscope.api_key = key
        self.model_name = model_name

    def encode(self, texts: list, batch_size=10):
        import dashscope
        res = []
        token_count = 0
        texts = [txt[:2048] for txt in texts]
        for i in range(0, len(texts), batch_size):
            resp = dashscope.TextEmbedding.call(
                model=self.model_name,
                input=texts[i:i + batch_size],
                text_type="document"
            )
            embds = [[] for _ in range(len(resp["output"]["embeddings"]))]
            for e in resp["output"]["embeddings"]:
                embds[e["text_index"]] = e["embedding"]
            res.extend(embds)
            token_count += resp["usage"]["total_tokens"]
        return np.array(res), token_count

    def encode_queries(self, text):
        resp = dashscope.TextEmbedding.call(
            model=self.model_name,
            input=text[:2048],
            text_type="query"
        )
        return np.array(resp["output"]["embeddings"][0]
                        ["embedding"]), resp["usage"]["total_tokens"]


class ZhipuEmbed(Base):
    def __init__(self, key, model_name="embedding-2", **kwargs):
        self.client = ZhipuAI(api_key=key)
        self.model_name = model_name

    def encode(self, texts: list, batch_size=32):
        arr = []
        tks_num = 0
        for txt in texts:
            res = self.client.embeddings.create(input=txt,
                                            model=self.model_name)
            arr.append(res.data[0].embedding)
            tks_num += res.usage.total_tokens
        return np.array(arr), tks_num

    def encode_queries(self, text):
        res = self.client.embeddings.create(input=text,
                                            model=self.model_name)
        return np.array(res.data[0].embedding), res.usage.total_tokens