File size: 6,501 Bytes
a3ebd45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import re
from functools import partial

import pandas as pd

from api.db import LLMType
from api.db.services.llm_service import LLMBundle
from api.settings import retrievaler
from graph.component.base import ComponentBase, ComponentParamBase


class GenerateParam(ComponentParamBase):
    """
    Define the Generate component parameters.
    """

    def __init__(self):
        super().__init__()
        self.llm_id = ""
        self.prompt = ""
        self.max_tokens = 256
        self.temperature = 0.1
        self.top_p = 0.3
        self.presence_penalty = 0.4
        self.frequency_penalty = 0.7
        self.cite = True
        #self.parameters = []

    def check(self):
        self.check_decimal_float(self.temperature, "Temperature")
        self.check_decimal_float(self.presence_penalty, "Presence penalty")
        self.check_decimal_float(self.frequency_penalty, "Frequency penalty")
        self.check_positive_number(self.max_tokens, "Max tokens")
        self.check_decimal_float(self.top_p, "Top P")
        self.check_empty(self.llm_id, "LLM")
        #self.check_defined_type(self.parameters, "Parameters", ["list"])

    def gen_conf(self):
        return {
            "max_tokens": self.max_tokens,
            "temperature": self.temperature,
            "top_p": self.top_p,
            "presence_penalty": self.presence_penalty,
            "frequency_penalty": self.frequency_penalty,
        }


class Generate(ComponentBase):
    component_name = "Generate"

    def _run(self, history, **kwargs):
        chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
        prompt = self._param.prompt

        retrieval_res = self.get_input()
        input = "\n- ".join(retrieval_res["content"])


        kwargs["input"] = input
        for n, v in kwargs.items():
            #prompt = re.sub(r"\{%s\}"%n, re.escape(str(v)), prompt)
            prompt = re.sub(r"\{%s\}"%n, str(v), prompt)

        if kwargs.get("stream"):
            return partial(self.stream_output, chat_mdl, prompt, retrieval_res)

        if "empty_response" in retrieval_res.columns:
            return Generate.be_output(input)

        ans = chat_mdl.chat(prompt, self._canvas.get_history(self._param.message_history_window_size), self._param.gen_conf())

        if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
            ans, idx = retrievaler.insert_citations(ans,
                                                   [ck["content_ltks"]
                                                    for _, ck in retrieval_res.iterrows()],
                                                   [ck["vector"]
                                                    for _,ck in retrieval_res.iterrows()],
                                                   LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, self._canvas.get_embedding_model()),
                                                   tkweight=0.7,
                                                   vtweight=0.3)
            del retrieval_res["vector"]
            retrieval_res = retrieval_res.to_dict("records")
            df = []
            for i in idx:
                df.append(retrieval_res[int(i)])
                r = re.search(r"^((.|[\r\n])*? ##%s\$\$)"%str(i), ans)
                assert r, f"{i} => {ans}"
                df[-1]["content"] = r.group(1)
                ans = re.sub(r"^((.|[\r\n])*? ##%s\$\$)" % str(i), "", ans)
            if ans: df.append({"content": ans})
            return pd.DataFrame(df)

        return Generate.be_output(ans)

    def stream_output(self, chat_mdl, prompt, retrieval_res):
        res = None
        if "empty_response" in retrieval_res.columns and "\n- ".join(retrieval_res["content"]):
            res = {"content": "\n- ".join(retrieval_res["content"]), "reference": []}
            yield res
            self.set_output(res)
            return

        answer = ""
        for ans in chat_mdl.chat_streamly(prompt, self._canvas.get_history(self._param.message_history_window_size), self._param.gen_conf()):
            res = {"content": ans, "reference": []}
            answer = ans
            yield res

        if self._param.cite and "content_ltks" in retrieval_res.columns and "vector" in retrieval_res.columns:
            answer, idx = retrievaler.insert_citations(answer,
                                                   [ck["content_ltks"]
                                                    for _, ck in retrieval_res.iterrows()],
                                                   [ck["vector"]
                                                    for _, ck in retrieval_res.iterrows()],
                                                   LLMBundle(self._canvas.get_tenant_id(), LLMType.EMBEDDING, self._canvas.get_embedding_model()),
                                                   tkweight=0.7,
                                                   vtweight=0.3)
            doc_ids = set([])
            recall_docs = []
            for i in idx:
                did = retrieval_res.loc[int(i), "doc_id"]
                if did in doc_ids: continue
                doc_ids.add(did)
                recall_docs.append({"doc_id": did, "doc_name": retrieval_res.loc[int(i), "docnm_kwd"]})

            del retrieval_res["vector"]
            del retrieval_res["content_ltks"]

            reference = {
                "chunks": [ck.to_dict() for _, ck in retrieval_res.iterrows()],
                "doc_aggs": recall_docs
            }

            if answer.lower().find("invalid key") >= 0 or answer.lower().find("invalid api") >= 0:
                answer += " Please set LLM API-Key in 'User Setting -> Model Providers -> API-Key'"
            res = {"content": answer, "reference": reference}
            yield res

        self.set_output(res)