File size: 7,417 Bytes
2fd3125
8f39e7a
8f9784a
2fd3125
 
8887e47
2fd3125
 
591cbef
 
2fd3125
8887e47
2fd3125
8f39e7a
2fd3125
 
 
 
 
 
 
 
c957852
e5aa7c3
99b8bda
2b235cb
2fd3125
c957852
cfbf213
1311113
cfbf213
c2e2def
cfbf213
7d2bd69
1311113
cfbf213
 
 
7d2bd69
1311113
cfbf213
 
 
7d2bd69
1311113
cfbf213
 
7d2bd69
1311113
cfbf213
 
 
 
 
8887e47
c957852
99b8bda
c957852
 
 
99b8bda
 
2fd3125
c957852
 
2fd3125
99b8bda
1daa4bd
7943d52
e5aa7c3
7d2bd69
e5aa7c3
1cc01e0
e5aa7c3
 
 
cfbf213
e5aa7c3
 
 
1cc01e0
e5aa7c3
 
 
 
 
 
 
 
 
 
 
 
 
c957852
 
 
 
 
cfbf213
c957852
d3d8d70
 
640c593
d3d8d70
 
2fd3125
1cc01e0
d3d8d70
e3fa72e
cfbf213
d3d8d70
e5aa7c3
d3d8d70
cfbf213
 
ce95639
7943d52
cfbf213
7943d52
 
cfbf213
 
 
 
7943d52
 
8f9784a
7943d52
cfbf213
2fd3125
8f9784a
 
7d2bd69
cfbf213
7d2bd69
8f39e7a
cfbf213
e06e08c
99b8bda
8f39e7a
7943d52
 
 
 
e3fa72e
7943d52
cfbf213
c957852
7d2bd69
2fd3125
830d3c7
f1ccc7f
7943d52
cfbf213
7943d52
 
 
f1ccc7f
e5aa7c3
 
 
 
 
 
 
 
 
640c593
e5aa7c3
 
 
8f9784a
 
e94059c
 
 
8f9784a
99b8bda
2fd3125
e5aa7c3
2fd3125
c957852
2fd3125
ff72ff8
c957852
2fd3125
99b8bda
2fd3125
93339b0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
<div align="center">
<a href="https://demo.ragflow.io/">
<img src="web/src/assets/logo-with-text.png" width="520" alt="ragflow logo">
</a>
</div>

<p align="center">
  <a href="./README.md">English</a> |
  <a href="./README_zh.md">็ฎ€ไฝ“ไธญๆ–‡</a> |
  <a href="./README_ja.md">ๆ—ฅๆœฌ่ชž</a>
</p>

<p align="center">
    <a href="https://demo.ragflow.io" target="_blank">

        <img alt="Static Badge" src="https://img.shields.io/badge/RAGFLOW-LLM-white?&labelColor=dd0af7"></a>

    <a href="https://hub.docker.com/r/infiniflow/ragflow" target="_blank">

        <img src="https://img.shields.io/badge/docker_pull-ragflow:v1.0-brightgreen"

            alt="docker pull ragflow:v1.0"></a>

      <a href="https://github.com/infiniflow/ragflow/blob/main/LICENSE">

    <img height="21" src="https://img.shields.io/badge/License-Apache--2.0-ffffff?style=flat-square&labelColor=d4eaf7&color=7d09f1" alt="license">

  </a>

</p>


## ๐Ÿ’ก What is RAGFlow?

[RAGFlow](https://demo.ragflow.io) is an open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding. It offers a streamlined RAG workflow for businesses of any scale, combining LLM (Large Language Models) to provide truthful question-answering capabilities, backed by well-founded citations from various complex formatted data.

## ๐ŸŒŸ Key Features

### ๐Ÿญ **"Quality in, quality out"**

- [Deep document understanding](./deepdoc/README.md)-based knowledge extraction from unstructured data with complicated formats.
- Finds "needle in a data haystack" of literally unlimited tokens.

### ๐Ÿฑ **Template-based chunking**

- Intelligent and explainable.
- Plenty of template options to choose from.

### ๐ŸŒฑ **Grounded citations with reduced hallucinations**

- Visualization of text chunking to allow human intervention.
- Quick view of the key references and traceable citations to support grounded answers.

### ๐Ÿ” **Compatibility with heterogeneous data sources**

- Supports Word, slides, excel, txt, images, scanned copies, structured data, web pages, and more.

### ๐Ÿ›€ **Automated and effortless RAG workflow**

- Streamlined RAG orchestration catered to both personal and large businesses.
- Configurable LLMs as well as embedding models.
- Multiple recall paired with fused re-ranking.
- Intuitive APIs for seamless integration with business.

## ๐Ÿ”Ž System Architecture

<div align="center" style="margin-top:20px;margin-bottom:20px;">
<img src="https://github.com/infiniflow/ragflow/assets/12318111/d6ac5664-c237-4200-a7c2-a4a00691b485" width="1000"/>
</div>

## ๐ŸŽฌ Get Started

### ๐Ÿ“ Prerequisites

- CPU >= 2 cores
- RAM >= 8 GB
- Docker >= 24.0.0 & Docker Compose >= v2.26.1
  > If you have not installed Docker on your local machine (Windows, Mac, or Linux), see [Install Docker Engine](https://docs.docker.com/engine/install/).

### ๐Ÿš€ Start up the server

1. Ensure `vm.max_map_count` >= 262144 ([more](./docs/max_map_count.md)):

   > To check the value of `vm.max_map_count`:
   >
   > ```bash

   > $ sysctl vm.max_map_count

   > ```
   >
   > Reset `vm.max_map_count` to a value at least 262144 if it is not.
   >
   > ```bash

   > # In this case, we set it to 262144:

   > $ sudo sysctl -w vm.max_map_count=262144

   > ```
   >
   > This change will be reset after a system reboot. To ensure your change remains permanent, add or update the `vm.max_map_count` value in **/etc/sysctl.conf** accordingly:
   >
   > ```bash

   > vm.max_map_count=262144

   > ```

2. Clone the repo:

   ```bash

   $ git clone https://github.com/infiniflow/ragflow.git

   ```

3. Build the pre-built Docker images and start up the server:

   ```bash

   $ cd ragflow/docker

   $ chmod +x ./entrypoint.sh

   $ docker compose up -d

   ```

   > The core image is about 9 GB in size and may take a while to load.

4. Check the server status after having the server up and running:

   ```bash

   $ docker logs -f ragflow-server

   ```

   _The following output confirms a successful launch of the system:_

   ```bash

       ____                 ______ __

      / __ \ ____ _ ____ _ / ____// /____  _      __

     / /_/ // __ `// __ `// /_   / // __ \| | /| / /

    / _, _// /_/ // /_/ // __/  / // /_/ /| |/ |/ /

   /_/ |_| \__,_/ \__, //_/    /_/ \____/ |__/|__/

                 /____/



    * Running on all addresses (0.0.0.0)

    * Running on http://127.0.0.1:9380

    * Running on http://x.x.x.x:9380

    INFO:werkzeug:Press CTRL+C to quit

   ```

5. In your web browser, enter the IP address of your server and log in to RAGFlow.
   > In the given scenario, you only need to enter `http://IP_OF_YOUR_MACHINE` (sans port number) as the default HTTP serving port `80` can be omitted when using the default configurations.
6. In [service_conf.yaml](./docker/service_conf.yaml), select the desired LLM factory in `user_default_llm` and update the `API_KEY` field with the corresponding API key.

   > See [./docs/llm_api_key_setup.md](./docs/llm_api_key_setup.md) for more information.

   _The show is now on!_

## ๐Ÿ”ง Configurations

When it comes to system configurations, you will need to manage the following files:

- [.env](./docker/.env): Keeps the fundamental setups for the system, such as `SVR_HTTP_PORT`, `MYSQL_PASSWORD`, and `MINIO_PASSWORD`.
- [service_conf.yaml](./docker/service_conf.yaml): Configures the back-end services.
- [docker-compose.yml](./docker/docker-compose.yml): The system relies on [docker-compose.yml](./docker/docker-compose.yml) to start up.

You must ensure that changes to the [.env](./docker/.env) file are in line with what are in the [service_conf.yaml](./docker/service_conf.yaml) file.

> The [./docker/README](./docker/README.md) file provides a detailed description of the environment settings and service configurations, and you are REQUIRED to ensure that all environment settings listed in the [./docker/README](./docker/README.md) file are aligned with the corresponding configurations in the [service_conf.yaml](./docker/service_conf.yaml) file.

To update the default HTTP serving port (80), go to [docker-compose.yml](./docker/docker-compose.yml) and change `80:80` to `<YOUR_SERVING_PORT>:80`.

> Updates to all system configurations require a system reboot to take effect:
>

> ```bash
> $ docker-compose up -d
> ```

## ๐Ÿ› ๏ธ Build from source

To build the Docker images from source:

```bash

$ git clone https://github.com/infiniflow/ragflow.git

$ cd ragflow/

$ docker build -t infiniflow/ragflow:v1.0 .

$ cd ragflow/docker

$ chmod +x ./entrypoint.sh

$ docker compose up -d

```

## ๐Ÿ†• Latest Features

- 2024-04-10 Add a new layout recognize model for method 'Laws'.
- 2024-04-08 Support [Ollama](./docs/ollama.md) for local LLM deployment.
- 2024-04-07 Support Chinese UI.

## ๐Ÿ“œ Roadmap

See the [RAGFlow Roadmap 2024](https://github.com/infiniflow/ragflow/issues/162)

## ๐Ÿ„ Community

- [Discord](https://discord.gg/trjjfJ9y)
- [Twitter](https://twitter.com/infiniflowai)

## ๐Ÿ™Œ Contributing

RAGFlow flourishes via open-source collaboration. In this spirit, we embrace diverse contributions from the community. If you would like to be a part, review our [Contribution Guidelines](https://github.com/infiniflow/ragflow/blob/main/docs/CONTRIBUTING.md) first.