File size: 9,488 Bytes
3079197
484e5ab
3079197
 
 
 
 
 
 
 
 
 
 
 
 
a86164e
c9a1362
 
79ada0b
8f39e7a
3079197
8f9784a
3079197
 
 
 
 
8f39e7a
da67205
c87ddd7
ba51460
8f39e7a
da67205
ba51460
 
8f39e7a
c9a1362
da67205
c9a1362
 
ba51460
 
3079197
79ada0b
3079197
 
 
 
 
 
 
e32ef75
 
 
3079197
2d09c38
0c30cc9
3079197
 
 
 
 
 
 
 
 
 
 
484e5ab
3079197
 
c87ddd7
3079197
79ada0b
 
3079197
 
 
 
 
9bf75d4
 
 
 
3079197
 
ba51460
 
 
 
e06e08c
3079197
 
 
c87ddd7
3079197
 
c87ddd7
 
e32ef75
 
c87ddd7
e32ef75
 
3079197
 
 
e06e08c
3079197
 
 
e32ef75
3079197
 
 
c87ddd7
e32ef75
3079197
 
79ada0b
e32ef75
 
a8294f2
e32ef75
 
 
a8294f2
e32ef75
 
 
 
79ada0b
 
 
 
 
 
5e0a689
 
 
e06e08c
5e0a689
 
 
 
adb65d7
 
 
 
ba51460
adb65d7
 
 
5e0a689
 
 
 
adb65d7
8f9784a
 
 
 
 
 
 
 
 
 
 
 
ba51460
8f9784a
 
 
 
 
 
ba51460
8f9784a
63df91a
 
a86164e
 
 
 
 
 
 
 
 
ba51460
a86164e
 
 
ba51460
 
a86164e
 
 
 
 
 
 
 
ba51460
 
a86164e
 
 
 
 
 
63df91a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a86164e
ba51460
3069c36
ba51460
 
 
 
3069c36
ba51460
 
3069c36
22390c0
 
ba51460
3069c36
ba51460
 
 
 
 
 
 
 
 
3069c36
ba51460
 
 
 
3069c36
ba51460
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
from typing import Optional

from huggingface_hub import snapshot_download
from zhipuai import ZhipuAI
import os
from abc import ABC
from ollama import Client
import dashscope
from openai import OpenAI
from FlagEmbedding import FlagModel
import torch
import numpy as np

from api.utils.file_utils import get_project_base_directory, get_home_cache_dir
from rag.utils import num_tokens_from_string, truncate

try:
    flag_model = FlagModel(os.path.join(get_home_cache_dir(), "bge-large-zh-v1.5"),
        query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
        use_fp16=torch.cuda.is_available())
except Exception as e:
    model_dir = snapshot_download(repo_id="BAAI/bge-large-zh-v1.5",
                                  local_dir=os.path.join(get_home_cache_dir(), "bge-large-zh-v1.5"),
                                  local_dir_use_symlinks=False)
    flag_model = FlagModel(model_dir,
                           query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
                           use_fp16=torch.cuda.is_available())


class Base(ABC):
    def __init__(self, key, model_name):
        pass

    def encode(self, texts: list, batch_size=32):
        raise NotImplementedError("Please implement encode method!")

    def encode_queries(self, text: str):
        raise NotImplementedError("Please implement encode method!")


class DefaultEmbedding(Base):
    def __init__(self, *args, **kwargs):
        """
        If you have trouble downloading HuggingFace models, -_^ this might help!!

        For Linux:
        export HF_ENDPOINT=https://hf-mirror.com

        For Windows:
        Good luck
        ^_-

        """
        self.model = flag_model

    def encode(self, texts: list, batch_size=32):
        texts = [truncate(t, 2048) for t in texts]
        token_count = 0
        for t in texts:
            token_count += num_tokens_from_string(t)
        res = []
        for i in range(0, len(texts), batch_size):
            res.extend(self.model.encode(texts[i:i + batch_size]).tolist())
        return np.array(res), token_count

    def encode_queries(self, text: str):
        token_count = num_tokens_from_string(text)
        return self.model.encode_queries([text]).tolist()[0], token_count


class OpenAIEmbed(Base):
    def __init__(self, key, model_name="text-embedding-ada-002",
                 base_url="https://api.openai.com/v1"):
        if not base_url:
            base_url = "https://api.openai.com/v1"
        self.client = OpenAI(api_key=key, base_url=base_url)
        self.model_name = model_name

    def encode(self, texts: list, batch_size=32):
        texts = [truncate(t, 8196) for t in texts]
        res = self.client.embeddings.create(input=texts,
                                            model=self.model_name)
        return np.array([d.embedding for d in res.data]
                        ), res.usage.total_tokens

    def encode_queries(self, text):
        res = self.client.embeddings.create(input=[truncate(text, 8196)],
                                            model=self.model_name)
        return np.array(res.data[0].embedding), res.usage.total_tokens


class QWenEmbed(Base):
    def __init__(self, key, model_name="text_embedding_v2", **kwargs):
        dashscope.api_key = key
        self.model_name = model_name

    def encode(self, texts: list, batch_size=10):
        import dashscope
        res = []
        token_count = 0
        texts = [truncate(t, 2048) for t in texts]
        for i in range(0, len(texts), batch_size):
            resp = dashscope.TextEmbedding.call(
                model=self.model_name,
                input=texts[i:i + batch_size],
                text_type="document"
            )
            embds = [[] for _ in range(len(resp["output"]["embeddings"]))]
            for e in resp["output"]["embeddings"]:
                embds[e["text_index"]] = e["embedding"]
            res.extend(embds)
            token_count += resp["usage"]["total_tokens"]
        return np.array(res), token_count

    def encode_queries(self, text):
        resp = dashscope.TextEmbedding.call(
            model=self.model_name,
            input=text[:2048],
            text_type="query"
        )
        return np.array(resp["output"]["embeddings"][0]
                        ["embedding"]), resp["usage"]["total_tokens"]


class ZhipuEmbed(Base):
    def __init__(self, key, model_name="embedding-2", **kwargs):
        self.client = ZhipuAI(api_key=key)
        self.model_name = model_name

    def encode(self, texts: list, batch_size=32):
        arr = []
        tks_num = 0
        for txt in texts:
            res = self.client.embeddings.create(input=txt,
                                                model=self.model_name)
            arr.append(res.data[0].embedding)
            tks_num += res.usage.total_tokens
        return np.array(arr), tks_num

    def encode_queries(self, text):
        res = self.client.embeddings.create(input=text,
                                            model=self.model_name)
        return np.array(res.data[0].embedding), res.usage.total_tokens


class OllamaEmbed(Base):
    def __init__(self, key, model_name, **kwargs):
        self.client = Client(host=kwargs["base_url"])
        self.model_name = model_name

    def encode(self, texts: list, batch_size=32):
        arr = []
        tks_num = 0
        for txt in texts:
            res = self.client.embeddings(prompt=txt,
                                         model=self.model_name)
            arr.append(res["embedding"])
            tks_num += 128
        return np.array(arr), tks_num

    def encode_queries(self, text):
        res = self.client.embeddings(prompt=text,
                                     model=self.model_name)
        return np.array(res["embedding"]), 128


class FastEmbed(Base):
    def __init__(
        self,
        key: Optional[str] = None,
        model_name: str = "BAAI/bge-small-en-v1.5",
        cache_dir: Optional[str] = None,
        threads: Optional[int] = None,
        **kwargs,
    ):
        from fastembed import TextEmbedding
        self._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)

    def encode(self, texts: list, batch_size=32):
        # Using the internal tokenizer to encode the texts and get the total
        # number of tokens
        encodings = self._model.model.tokenizer.encode_batch(texts)
        total_tokens = sum(len(e) for e in encodings)

        embeddings = [e.tolist() for e in self._model.embed(texts, batch_size)]

        return np.array(embeddings), total_tokens

    def encode_queries(self, text: str):
        # Using the internal tokenizer to encode the texts and get the total
        # number of tokens
        encoding = self._model.model.tokenizer.encode(text)
        embedding = next(self._model.query_embed(text)).tolist()

        return np.array(embedding), len(encoding.ids)


class XinferenceEmbed(Base):
    def __init__(self, key, model_name="", base_url=""):
        self.client = OpenAI(api_key="xxx", base_url=base_url)
        self.model_name = model_name

    def encode(self, texts: list, batch_size=32):
        res = self.client.embeddings.create(input=texts,
                                            model=self.model_name)
        return np.array([d.embedding for d in res.data]
                        ), res.usage.total_tokens

    def encode_queries(self, text):
        res = self.client.embeddings.create(input=[text],
                                            model=self.model_name)
        return np.array(res.data[0].embedding), res.usage.total_tokens


class YoudaoEmbed(Base):
    _client = None

    def __init__(self, key=None, model_name="maidalun1020/bce-embedding-base_v1", **kwargs):
        from BCEmbedding import EmbeddingModel as qanthing
        if not YoudaoEmbed._client:
            try:
                print("LOADING BCE...")
                YoudaoEmbed._client = qanthing(model_name_or_path=os.path.join(
                    get_home_cache_dir(),
                    "bce-embedding-base_v1"))
            except Exception as e:
                YoudaoEmbed._client = qanthing(
                    model_name_or_path=model_name.replace(
                        "maidalun1020", "InfiniFlow"))

    def encode(self, texts: list, batch_size=10):
        res = []
        token_count = 0
        for t in texts:
            token_count += num_tokens_from_string(t)
        for i in range(0, len(texts), batch_size):
            embds = YoudaoEmbed._client.encode(texts[i:i + batch_size])
            res.extend(embds)
        return np.array(res), token_count

    def encode_queries(self, text):
        embds = YoudaoEmbed._client.encode([text])
        return np.array(embds[0]), num_tokens_from_string(text)