File size: 14,847 Bytes
40a1db3 6101699 40a1db3 a4802a2 40a1db3 44731b3 fe9b6b3 40a1db3 a4802a2 ee8a916 196c662 ee8a916 a4802a2 ee8a916 1483d00 ee8a916 533089d 49c21eb a4802a2 ee8a916 40a1db3 a4802a2 95da4bf 40a1db3 196c662 40a1db3 252d77a 40a1db3 95da4bf a4802a2 95da4bf 40a1db3 196c662 40a1db3 196c662 40a1db3 196c662 40a1db3 ee8a916 40a1db3 4d2f593 a4802a2 40a1db3 a4802a2 40a1db3 73a56f9 40a1db3 196c662 40a1db3 196c662 40a1db3 196c662 40a1db3 5b9e61c 40a1db3 a4802a2 fe9b6b3 40a1db3 a4802a2 40a1db3 196c662 a4802a2 5b9e61c 533089d a4802a2 5b9e61c 95da4bf af2dd36 95da4bf aeb875a 95da4bf 1483d00 95da4bf 533089d a4802a2 533089d 196c662 6101699 95da4bf 40a1db3 a4802a2 95da4bf 40a1db3 196c662 40a1db3 252d77a 40a1db3 af2dd36 a4802a2 af2dd36 40a1db3 196c662 40a1db3 196c662 40a1db3 196c662 40a1db3 5b9e61c 40a1db3 196c662 40a1db3 fe9b6b3 40a1db3 533089d a4802a2 533089d a4802a2 40a1db3 533089d a4802a2 533089d a4802a2 533089d 40a1db3 196c662 40a1db3 a4802a2 fe9b6b3 40a1db3 ee8a916 40a1db3 792f830 40a1db3 f4df7fc 40a1db3 811d178 40a1db3 a4802a2 40a1db3 533089d a4802a2 40a1db3 a4802a2 40a1db3 a4802a2 196c662 40a1db3 95da4bf 40a1db3 a4802a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from flask import request
from api import settings
from api.db import StatusEnum
from api.db.services.dialog_service import DialogService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import TenantLLMService
from api.db.services.user_service import TenantService
from api.utils import get_uuid
from api.utils.api_utils import get_error_data_result, token_required
from api.utils.api_utils import get_result
@manager.route('/chats', methods=['POST']) # noqa: F821
@token_required
def create(tenant_id):
req = request.json
ids = req.get("dataset_ids")
if not ids:
return get_error_data_result(message="`dataset_ids` is required")
for kb_id in ids:
kbs = KnowledgebaseService.accessible(kb_id=kb_id, user_id=tenant_id)
if not kbs:
return get_error_data_result(f"You don't own the dataset {kb_id}")
kbs = KnowledgebaseService.query(id=kb_id)
kb = kbs[0]
if kb.chunk_num == 0:
return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
kbs = KnowledgebaseService.get_by_ids(ids)
embd_count = list(set([kb.embd_id for kb in kbs]))
if len(embd_count) != 1:
return get_result(message='Datasets use different embedding models."',
code=settings.RetCode.AUTHENTICATION_ERROR)
req["kb_ids"] = ids
# llm
llm = req.get("llm")
if llm:
if "model_name" in llm:
req["llm_id"] = llm.pop("model_name")
if not TenantLLMService.query(tenant_id=tenant_id, llm_name=req["llm_id"], model_type="chat"):
return get_error_data_result(f"`model_name` {req.get('llm_id')} doesn't exist")
req["llm_setting"] = req.pop("llm")
e, tenant = TenantService.get_by_id(tenant_id)
if not e:
return get_error_data_result(message="Tenant not found!")
# prompt
prompt = req.get("prompt")
key_mapping = {"parameters": "variables",
"prologue": "opener",
"quote": "show_quote",
"system": "prompt",
"rerank_id": "rerank_model",
"vector_similarity_weight": "keywords_similarity_weight"}
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id","top_k"]
if prompt:
for new_key, old_key in key_mapping.items():
if old_key in prompt:
prompt[new_key] = prompt.pop(old_key)
for key in key_list:
if key in prompt:
req[key] = prompt.pop(key)
req["prompt_config"] = req.pop("prompt")
# init
req["id"] = get_uuid()
req["description"] = req.get("description", "A helpful Assistant")
req["icon"] = req.get("avatar", "")
req["top_n"] = req.get("top_n", 6)
req["top_k"] = req.get("top_k", 1024)
req["rerank_id"] = req.get("rerank_id", "")
if req.get("rerank_id"):
value_rerank_model = ["BAAI/bge-reranker-v2-m3", "maidalun1020/bce-reranker-base_v1"]
if req["rerank_id"] not in value_rerank_model and not TenantLLMService.query(tenant_id=tenant_id,
llm_name=req.get("rerank_id"),
model_type="rerank"):
return get_error_data_result(f"`rerank_model` {req.get('rerank_id')} doesn't exist")
if not req.get("llm_id"):
req["llm_id"] = tenant.llm_id
if not req.get("name"):
return get_error_data_result(message="`name` is required.")
if DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value):
return get_error_data_result(message="Duplicated chat name in creating chat.")
# tenant_id
if req.get("tenant_id"):
return get_error_data_result(message="`tenant_id` must not be provided.")
req["tenant_id"] = tenant_id
# prompt more parameter
default_prompt = {
"system": """You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence "The answer you are looking for is not found in the knowledge base!" Answers need to consider chat history.
Here is the knowledge base:
{knowledge}
The above is the knowledge base.""",
"prologue": "Hi! I'm your assistant, what can I do for you?",
"parameters": [
{"key": "knowledge", "optional": False}
],
"empty_response": "Sorry! No relevant content was found in the knowledge base!",
"quote": True,
"tts": False,
"refine_multiturn": True
}
key_list_2 = ["system", "prologue", "parameters", "empty_response", "quote", "tts", "refine_multiturn"]
if "prompt_config" not in req:
req['prompt_config'] = {}
for key in key_list_2:
temp = req['prompt_config'].get(key)
if (not temp and key == 'system') or (key not in req["prompt_config"]):
req['prompt_config'][key] = default_prompt[key]
for p in req['prompt_config']["parameters"]:
if p["optional"]:
continue
if req['prompt_config']["system"].find("{%s}" % p["key"]) < 0:
return get_error_data_result(
message="Parameter '{}' is not used".format(p["key"]))
# save
if not DialogService.save(**req):
return get_error_data_result(message="Fail to new a chat!")
# response
e, res = DialogService.get_by_id(req["id"])
if not e:
return get_error_data_result(message="Fail to new a chat!")
res = res.to_json()
renamed_dict = {}
for key, value in res["prompt_config"].items():
new_key = key_mapping.get(key, key)
renamed_dict[new_key] = value
res["prompt"] = renamed_dict
del res["prompt_config"]
new_dict = {"similarity_threshold": res["similarity_threshold"],
"keywords_similarity_weight": res["vector_similarity_weight"],
"top_n": res["top_n"],
"rerank_model": res['rerank_id']}
res["prompt"].update(new_dict)
for key in key_list:
del res[key]
res["llm"] = res.pop("llm_setting")
res["llm"]["model_name"] = res.pop("llm_id")
del res["kb_ids"]
res["dataset_ids"] = req["dataset_ids"]
res["avatar"] = res.pop("icon")
return get_result(data=res)
@manager.route('/chats/<chat_id>', methods=['PUT']) # noqa: F821
@token_required
def update(tenant_id, chat_id):
if not DialogService.query(tenant_id=tenant_id, id=chat_id, status=StatusEnum.VALID.value):
return get_error_data_result(message='You do not own the chat')
req = request.json
ids = req.get("dataset_ids")
if "show_quotation" in req:
req["do_refer"] = req.pop("show_quotation")
if "dataset_ids" in req:
if not ids:
return get_error_data_result("`dataset_ids` can't be empty")
if ids:
for kb_id in ids:
kbs = KnowledgebaseService.accessible(kb_id=kb_id, user_id=tenant_id)
if not kbs:
return get_error_data_result(f"You don't own the dataset {kb_id}")
kbs = KnowledgebaseService.query(id=kb_id)
kb = kbs[0]
if kb.chunk_num == 0:
return get_error_data_result(f"The dataset {kb_id} doesn't own parsed file")
kbs = KnowledgebaseService.get_by_ids(ids)
embd_count = list(set([kb.embd_id for kb in kbs]))
if len(embd_count) != 1:
return get_result(
message='Datasets use different embedding models."',
code=settings.RetCode.AUTHENTICATION_ERROR)
req["kb_ids"] = ids
llm = req.get("llm")
if llm:
if "model_name" in llm:
req["llm_id"] = llm.pop("model_name")
if not TenantLLMService.query(tenant_id=tenant_id, llm_name=req["llm_id"], model_type="chat"):
return get_error_data_result(f"`model_name` {req.get('llm_id')} doesn't exist")
req["llm_setting"] = req.pop("llm")
e, tenant = TenantService.get_by_id(tenant_id)
if not e:
return get_error_data_result(message="Tenant not found!")
# prompt
prompt = req.get("prompt")
key_mapping = {"parameters": "variables",
"prologue": "opener",
"quote": "show_quote",
"system": "prompt",
"rerank_id": "rerank_model",
"vector_similarity_weight": "keywords_similarity_weight"}
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id","top_k"]
if prompt:
for new_key, old_key in key_mapping.items():
if old_key in prompt:
prompt[new_key] = prompt.pop(old_key)
for key in key_list:
if key in prompt:
req[key] = prompt.pop(key)
req["prompt_config"] = req.pop("prompt")
e, res = DialogService.get_by_id(chat_id)
res = res.to_json()
if req.get("rerank_id"):
value_rerank_model = ["BAAI/bge-reranker-v2-m3", "maidalun1020/bce-reranker-base_v1"]
if req["rerank_id"] not in value_rerank_model and not TenantLLMService.query(tenant_id=tenant_id,
llm_name=req.get("rerank_id"),
model_type="rerank"):
return get_error_data_result(f"`rerank_model` {req.get('rerank_id')} doesn't exist")
if "name" in req:
if not req.get("name"):
return get_error_data_result(message="`name` is not empty.")
if req["name"].lower() != res["name"].lower() \
and len(
DialogService.query(name=req["name"], tenant_id=tenant_id, status=StatusEnum.VALID.value)) > 0:
return get_error_data_result(message="Duplicated chat name in updating dataset.")
if "prompt_config" in req:
res["prompt_config"].update(req["prompt_config"])
for p in res["prompt_config"]["parameters"]:
if p["optional"]:
continue
if res["prompt_config"]["system"].find("{%s}" % p["key"]) < 0:
return get_error_data_result(message="Parameter '{}' is not used".format(p["key"]))
if "llm_setting" in req:
res["llm_setting"].update(req["llm_setting"])
req["prompt_config"] = res["prompt_config"]
req["llm_setting"] = res["llm_setting"]
# avatar
if "avatar" in req:
req["icon"] = req.pop("avatar")
if "dataset_ids" in req:
req.pop("dataset_ids")
if not DialogService.update_by_id(chat_id, req):
return get_error_data_result(message="Chat not found!")
return get_result()
@manager.route('/chats', methods=['DELETE']) # noqa: F821
@token_required
def delete(tenant_id):
req = request.json
if not req:
ids = None
else:
ids = req.get("ids")
if not ids:
id_list = []
dias = DialogService.query(tenant_id=tenant_id, status=StatusEnum.VALID.value)
for dia in dias:
id_list.append(dia.id)
else:
id_list = ids
for id in id_list:
if not DialogService.query(tenant_id=tenant_id, id=id, status=StatusEnum.VALID.value):
return get_error_data_result(message=f"You don't own the chat {id}")
temp_dict = {"status": StatusEnum.INVALID.value}
DialogService.update_by_id(id, temp_dict)
return get_result()
@manager.route('/chats', methods=['GET']) # noqa: F821
@token_required
def list_chat(tenant_id):
id = request.args.get("id")
name = request.args.get("name")
if id or name:
chat = DialogService.query(id=id, name=name, status=StatusEnum.VALID.value, tenant_id=tenant_id)
if not chat:
return get_error_data_result(message="The chat doesn't exist")
page_number = int(request.args.get("page", 1))
items_per_page = int(request.args.get("page_size", 30))
orderby = request.args.get("orderby", "create_time")
if request.args.get("desc") == "False" or request.args.get("desc") == "false":
desc = False
else:
desc = True
chats = DialogService.get_list(tenant_id, page_number, items_per_page, orderby, desc, id, name)
if not chats:
return get_result(data=[])
list_assts = []
key_mapping = {"parameters": "variables",
"prologue": "opener",
"quote": "show_quote",
"system": "prompt",
"rerank_id": "rerank_model",
"vector_similarity_weight": "keywords_similarity_weight",
"do_refer": "show_quotation"}
key_list = ["similarity_threshold", "vector_similarity_weight", "top_n", "rerank_id"]
for res in chats:
renamed_dict = {}
for key, value in res["prompt_config"].items():
new_key = key_mapping.get(key, key)
renamed_dict[new_key] = value
res["prompt"] = renamed_dict
del res["prompt_config"]
new_dict = {"similarity_threshold": res["similarity_threshold"],
"keywords_similarity_weight": res["vector_similarity_weight"],
"top_n": res["top_n"],
"rerank_model": res['rerank_id']}
res["prompt"].update(new_dict)
for key in key_list:
del res[key]
res["llm"] = res.pop("llm_setting")
res["llm"]["model_name"] = res.pop("llm_id")
kb_list = []
for kb_id in res["kb_ids"]:
kb = KnowledgebaseService.query(id=kb_id)
if not kb:
return get_error_data_result(message=f"Don't exist the kb {kb_id}")
kb_list.append(kb[0].to_json())
del res["kb_ids"]
res["datasets"] = kb_list
res["avatar"] = res.pop("icon")
list_assts.append(res)
return get_result(data=list_assts)
|