File size: 29,877 Bytes
3079197 484e5ab 3079197 8bc2fc9 c037a22 6d597a0 c037a22 c9a1362 79ada0b 8f39e7a 3079197 8f9784a 3079197 83a0020 dbcbb17 6101699 c037a22 c87ddd7 1f5bc27 06a1df0 79ada0b 638a84e 3079197 08913be 3079197 e32ef75 3079197 2d09c38 c037a22 05dad97 c037a22 3079197 6101699 05dad97 dbcbb17 05dad97 3256beb 05dad97 22fe41e 05dad97 3256beb 05dad97 3079197 08913be c87ddd7 3079197 79ada0b 08913be 3079197 08913be 3079197 9bf75d4 c037a22 9bf75d4 3079197 ba51460 e06e08c 3079197 08913be 49d1201 08913be e32ef75 49d1201 e32ef75 3079197 5bd5c21 6ead7eb 5bd5c21 08913be 5bd5c21 d3dad46 6ead7eb 5bd5c21 5f6673f 29b8637 f711e2a fa680e0 29b8637 5f6673f d7bf446 3079197 e06e08c 08913be 3079197 08913be 3079197 08913be c60dccb 08913be c60dccb 21cb28c c60dccb 3079197 c60dccb 08913be c60dccb e32ef75 c60dccb 22fe41e 21cb28c c60dccb 5e0a689 e06e08c 5e0a689 08913be adb65d7 ba51460 adb65d7 5e0a689 adb65d7 8f9784a 08913be 8f9784a ba51460 8f9784a ba51460 8f9784a 63df91a a86164e c037a22 a86164e c037a22 eae0334 c037a22 eae0334 c037a22 a86164e 6101699 d55a6be c037a22 a86164e 08913be ba51460 a86164e 08913be a86164e ba51460 a86164e 63df91a 96edfc5 13b2570 63df91a 08913be 63df91a a86164e ba51460 3069c36 ba51460 6101699 d55a6be ba51460 8bc2fc9 3069c36 22390c0 22fe41e 3069c36 ba51460 08913be ba51460 3069c36 ba51460 3069c36 ba51460 c037a22 e5a1268 c037a22 08913be c037a22 08913be c037a22 b43a465 83a0020 b43a465 83a0020 b43a465 83a0020 b43a465 4825b73 08913be 4825b73 08913be 4825b73 dffdcde 7b1ec89 dffdcde 08913be dffdcde 57bca82 dffdcde 1f5bc27 08913be 1f5bc27 08913be 1f5bc27 08913be 1f5bc27 08913be 1f5bc27 5bd5c21 745354f 08913be 745354f 5e7d900 6ead7eb 5e7d900 07dead3 5e7d900 29fdf3e 07dead3 29fdf3e 2e1c73c 08913be 2e1c73c 24b9cdf 2e1c73c ce69533 5036aed 99ac12c 5036aed 38ccbb8 ce69533 89708fb 61bc209 16d7b7b 61bc209 16d7b7b 08913be 16d7b7b 7449fd0 16d7b7b 38ccbb8 08913be 38ccbb8 06a1df0 c9d78b3 06a1df0 b6bfae8 08913be b6bfae8 449650c 086a0cb 0dec4cf 086a0cb 08913be 086a0cb 0dec4cf c62f284 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 |
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import re
import threading
import requests
from huggingface_hub import snapshot_download
from zhipuai import ZhipuAI
import os
from abc import ABC
from ollama import Client
import dashscope
from openai import OpenAI
import numpy as np
import asyncio
from api import settings
from api.utils.file_utils import get_home_cache_dir
from rag.utils import num_tokens_from_string, truncate
import google.generativeai as genai
import json
class Base(ABC):
def __init__(self, key, model_name):
pass
def encode(self, texts: list):
raise NotImplementedError("Please implement encode method!")
def encode_queries(self, text: str):
raise NotImplementedError("Please implement encode method!")
class DefaultEmbedding(Base):
_model = None
_model_lock = threading.Lock()
def __init__(self, key, model_name, **kwargs):
"""
If you have trouble downloading HuggingFace models, -_^ this might help!!
For Linux:
export HF_ENDPOINT=https://hf-mirror.com
For Windows:
Good luck
^_-
"""
if not settings.LIGHTEN and not DefaultEmbedding._model:
with DefaultEmbedding._model_lock:
from FlagEmbedding import FlagModel
import torch
if not DefaultEmbedding._model:
try:
DefaultEmbedding._model = FlagModel(os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
use_fp16=torch.cuda.is_available())
except Exception:
model_dir = snapshot_download(repo_id="BAAI/bge-large-zh-v1.5",
local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
local_dir_use_symlinks=False)
DefaultEmbedding._model = FlagModel(model_dir,
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
use_fp16=torch.cuda.is_available())
self._model = DefaultEmbedding._model
def encode(self, texts: list):
batch_size = 16
texts = [truncate(t, 2048) for t in texts]
token_count = 0
for t in texts:
token_count += num_tokens_from_string(t)
ress = []
for i in range(0, len(texts), batch_size):
ress.extend(self._model.encode(texts[i:i + batch_size]).tolist())
return np.array(ress), token_count
def encode_queries(self, text: str):
token_count = num_tokens_from_string(text)
return self._model.encode_queries([text]).tolist()[0], token_count
class OpenAIEmbed(Base):
def __init__(self, key, model_name="text-embedding-ada-002",
base_url="https://api.openai.com/v1"):
if not base_url:
base_url = "https://api.openai.com/v1"
self.client = OpenAI(api_key=key, base_url=base_url)
self.model_name = model_name
def encode(self, texts: list):
# OpenAI requires batch size <=16
batch_size = 16
texts = [truncate(t, 8191) for t in texts]
ress = []
total_tokens = 0
for i in range(0, len(texts), batch_size):
res = self.client.embeddings.create(input=texts[i:i + batch_size],
model=self.model_name)
ress.extend([d.embedding for d in res.data])
total_tokens += res.usage.total_tokens
return np.array(ress), total_tokens
def encode_queries(self, text):
res = self.client.embeddings.create(input=[truncate(text, 8191)],
model=self.model_name)
return np.array(res.data[0].embedding), res.usage.total_tokens
class LocalAIEmbed(Base):
def __init__(self, key, model_name, base_url):
if not base_url:
raise ValueError("Local embedding model url cannot be None")
if base_url.split("/")[-1] != "v1":
base_url = os.path.join(base_url, "v1")
self.client = OpenAI(api_key="empty", base_url=base_url)
self.model_name = model_name.split("___")[0]
def encode(self, texts: list):
batch_size = 16
ress = []
for i in range(0, len(texts), batch_size):
res = self.client.embeddings.create(input=texts[i:i + batch_size], model=self.model_name)
ress.extend([d.embedding for d in res.data])
# local embedding for LmStudio donot count tokens
return np.array(ress), 1024
def encode_queries(self, text):
embds, cnt = self.encode([text])
return np.array(embds[0]), cnt
class AzureEmbed(OpenAIEmbed):
def __init__(self, key, model_name, **kwargs):
from openai.lib.azure import AzureOpenAI
api_key = json.loads(key).get('api_key', '')
api_version = json.loads(key).get('api_version', '2024-02-01')
self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
self.model_name = model_name
class BaiChuanEmbed(OpenAIEmbed):
def __init__(self, key,
model_name='Baichuan-Text-Embedding',
base_url='https://api.baichuan-ai.com/v1'):
if not base_url:
base_url = "https://api.baichuan-ai.com/v1"
super().__init__(key, model_name, base_url)
class QWenEmbed(Base):
def __init__(self, key, model_name="text_embedding_v2", **kwargs):
self.key = key
self.model_name = model_name
def encode(self, texts: list):
import dashscope
batch_size = 4
try:
res = []
token_count = 0
texts = [truncate(t, 2048) for t in texts]
for i in range(0, len(texts), batch_size):
resp = dashscope.TextEmbedding.call(
model=self.model_name,
input=texts[i:i + batch_size],
api_key=self.key,
text_type="document"
)
embds = [[] for _ in range(len(resp["output"]["embeddings"]))]
for e in resp["output"]["embeddings"]:
embds[e["text_index"]] = e["embedding"]
res.extend(embds)
token_count += resp["usage"]["total_tokens"]
return np.array(res), token_count
except Exception as e:
raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name)
return np.array([]), 0
def encode_queries(self, text):
try:
resp = dashscope.TextEmbedding.call(
model=self.model_name,
input=text[:2048],
api_key=self.key,
text_type="query"
)
return np.array(resp["output"]["embeddings"][0]
["embedding"]), resp["usage"]["total_tokens"]
except Exception:
raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name)
return np.array([]), 0
class ZhipuEmbed(Base):
def __init__(self, key, model_name="embedding-2", **kwargs):
self.client = ZhipuAI(api_key=key)
self.model_name = model_name
def encode(self, texts: list):
arr = []
tks_num = 0
for txt in texts:
res = self.client.embeddings.create(input=txt,
model=self.model_name)
arr.append(res.data[0].embedding)
tks_num += res.usage.total_tokens
return np.array(arr), tks_num
def encode_queries(self, text):
res = self.client.embeddings.create(input=text,
model=self.model_name)
return np.array(res.data[0].embedding), res.usage.total_tokens
class OllamaEmbed(Base):
def __init__(self, key, model_name, **kwargs):
self.client = Client(host=kwargs["base_url"])
self.model_name = model_name
def encode(self, texts: list):
arr = []
tks_num = 0
for txt in texts:
res = self.client.embeddings(prompt=txt,
model=self.model_name)
arr.append(res["embedding"])
tks_num += 128
return np.array(arr), tks_num
def encode_queries(self, text):
res = self.client.embeddings(prompt=text,
model=self.model_name)
return np.array(res["embedding"]), 128
class FastEmbed(Base):
_model = None
def __init__(
self,
key: str | None = None,
model_name: str = "BAAI/bge-small-en-v1.5",
cache_dir: str | None = None,
threads: int | None = None,
**kwargs,
):
if not settings.LIGHTEN and not FastEmbed._model:
from fastembed import TextEmbedding
self._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
def encode(self, texts: list):
# Using the internal tokenizer to encode the texts and get the total
# number of tokens
encodings = self._model.model.tokenizer.encode_batch(texts)
total_tokens = sum(len(e) for e in encodings)
embeddings = [e.tolist() for e in self._model.embed(texts, batch_size=16)]
return np.array(embeddings), total_tokens
def encode_queries(self, text: str):
# Using the internal tokenizer to encode the texts and get the total
# number of tokens
encoding = self._model.model.tokenizer.encode(text)
embedding = next(self._model.query_embed(text)).tolist()
return np.array(embedding), len(encoding.ids)
class XinferenceEmbed(Base):
def __init__(self, key, model_name="", base_url=""):
if base_url.split("/")[-1] != "v1":
base_url = os.path.join(base_url, "v1")
self.client = OpenAI(api_key=key, base_url=base_url)
self.model_name = model_name
def encode(self, texts: list):
batch_size = 16
ress = []
total_tokens = 0
for i in range(0, len(texts), batch_size):
res = self.client.embeddings.create(input=texts[i:i + batch_size], model=self.model_name)
ress.extend([d.embedding for d in res.data])
total_tokens += res.usage.total_tokens
return np.array(ress), total_tokens
def encode_queries(self, text):
res = self.client.embeddings.create(input=[text],
model=self.model_name)
return np.array(res.data[0].embedding), res.usage.total_tokens
class YoudaoEmbed(Base):
_client = None
def __init__(self, key=None, model_name="maidalun1020/bce-embedding-base_v1", **kwargs):
if not settings.LIGHTEN and not YoudaoEmbed._client:
from BCEmbedding import EmbeddingModel as qanthing
try:
logging.info("LOADING BCE...")
YoudaoEmbed._client = qanthing(model_name_or_path=os.path.join(
get_home_cache_dir(),
"bce-embedding-base_v1"))
except Exception:
YoudaoEmbed._client = qanthing(
model_name_or_path=model_name.replace(
"maidalun1020", "InfiniFlow"))
def encode(self, texts: list):
batch_size = 10
res = []
token_count = 0
for t in texts:
token_count += num_tokens_from_string(t)
for i in range(0, len(texts), batch_size):
embds = YoudaoEmbed._client.encode(texts[i:i + batch_size])
res.extend(embds)
return np.array(res), token_count
def encode_queries(self, text):
embds = YoudaoEmbed._client.encode([text])
return np.array(embds[0]), num_tokens_from_string(text)
class JinaEmbed(Base):
def __init__(self, key, model_name="jina-embeddings-v3",
base_url="https://api.jina.ai/v1/embeddings"):
self.base_url = "https://api.jina.ai/v1/embeddings"
self.headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {key}"
}
self.model_name = model_name
def encode(self, texts: list):
texts = [truncate(t, 8196) for t in texts]
batch_size = 16
ress = []
token_count = 0
for i in range(0, len(texts), batch_size):
data = {
"model": self.model_name,
"input": texts[i:i + batch_size],
'encoding_type': 'float'
}
res = requests.post(self.base_url, headers=self.headers, json=data).json()
ress.extend([d["embedding"] for d in res["data"]])
token_count += res["usage"]["total_tokens"]
return np.array(ress), token_count
def encode_queries(self, text):
embds, cnt = self.encode([text])
return np.array(embds[0]), cnt
class InfinityEmbed(Base):
_model = None
def __init__(
self,
model_names: list[str] = ("BAAI/bge-small-en-v1.5",),
engine_kwargs: dict = {},
key = None,
):
from infinity_emb import EngineArgs
from infinity_emb.engine import AsyncEngineArray
self._default_model = model_names[0]
self.engine_array = AsyncEngineArray.from_args([EngineArgs(model_name_or_path = model_name, **engine_kwargs) for model_name in model_names])
async def _embed(self, sentences: list[str], model_name: str = ""):
if not model_name:
model_name = self._default_model
engine = self.engine_array[model_name]
was_already_running = engine.is_running
if not was_already_running:
await engine.astart()
embeddings, usage = await engine.embed(sentences=sentences)
if not was_already_running:
await engine.astop()
return embeddings, usage
def encode(self, texts: list[str], model_name: str = "") -> tuple[np.ndarray, int]:
# Using the internal tokenizer to encode the texts and get the total
# number of tokens
embeddings, usage = asyncio.run(self._embed(texts, model_name))
return np.array(embeddings), usage
def encode_queries(self, text: str) -> tuple[np.ndarray, int]:
# Using the internal tokenizer to encode the texts and get the total
# number of tokens
return self.encode([text])
class MistralEmbed(Base):
def __init__(self, key, model_name="mistral-embed",
base_url=None):
from mistralai.client import MistralClient
self.client = MistralClient(api_key=key)
self.model_name = model_name
def encode(self, texts: list):
texts = [truncate(t, 8196) for t in texts]
batch_size = 16
ress = []
token_count = 0
for i in range(0, len(texts), batch_size):
res = self.client.embeddings(input=texts[i:i + batch_size],
model=self.model_name)
ress.extend([d.embedding for d in res.data])
token_count += res.usage.total_tokens
return np.array(ress), token_count
def encode_queries(self, text):
res = self.client.embeddings(input=[truncate(text, 8196)],
model=self.model_name)
return np.array(res.data[0].embedding), res.usage.total_tokens
class BedrockEmbed(Base):
def __init__(self, key, model_name,
**kwargs):
import boto3
self.bedrock_ak = json.loads(key).get('bedrock_ak', '')
self.bedrock_sk = json.loads(key).get('bedrock_sk', '')
self.bedrock_region = json.loads(key).get('bedrock_region', '')
self.model_name = model_name
self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region,
aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
def encode(self, texts: list):
texts = [truncate(t, 8196) for t in texts]
embeddings = []
token_count = 0
for text in texts:
if self.model_name.split('.')[0] == 'amazon':
body = {"inputText": text}
elif self.model_name.split('.')[0] == 'cohere':
body = {"texts": [text], "input_type": 'search_document'}
response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
model_response = json.loads(response["body"].read())
embeddings.extend([model_response["embedding"]])
token_count += num_tokens_from_string(text)
return np.array(embeddings), token_count
def encode_queries(self, text):
embeddings = []
token_count = num_tokens_from_string(text)
if self.model_name.split('.')[0] == 'amazon':
body = {"inputText": truncate(text, 8196)}
elif self.model_name.split('.')[0] == 'cohere':
body = {"texts": [truncate(text, 8196)], "input_type": 'search_query'}
response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
model_response = json.loads(response["body"].read())
embeddings.extend(model_response["embedding"])
return np.array(embeddings), token_count
class GeminiEmbed(Base):
def __init__(self, key, model_name='models/text-embedding-004',
**kwargs):
self.key = key
self.model_name = 'models/' + model_name
def encode(self, texts: list):
texts = [truncate(t, 2048) for t in texts]
token_count = sum(num_tokens_from_string(text) for text in texts)
genai.configure(api_key=self.key)
batch_size = 16
ress = []
for i in range(0, len(texts), batch_size):
result = genai.embed_content(
model=self.model_name,
content=texts[i, i + batch_size],
task_type="retrieval_document",
title="Embedding of single string")
ress.extend(result['embedding'])
return np.array(ress),token_count
def encode_queries(self, text):
genai.configure(api_key=self.key)
result = genai.embed_content(
model=self.model_name,
content=truncate(text,2048),
task_type="retrieval_document",
title="Embedding of single string")
token_count = num_tokens_from_string(text)
return np.array(result['embedding']),token_count
class NvidiaEmbed(Base):
def __init__(
self, key, model_name, base_url="https://integrate.api.nvidia.com/v1/embeddings"
):
if not base_url:
base_url = "https://integrate.api.nvidia.com/v1/embeddings"
self.api_key = key
self.base_url = base_url
self.headers = {
"accept": "application/json",
"Content-Type": "application/json",
"authorization": f"Bearer {self.api_key}",
}
self.model_name = model_name
if model_name == "nvidia/embed-qa-4":
self.base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/embeddings"
self.model_name = "NV-Embed-QA"
if model_name == "snowflake/arctic-embed-l":
self.base_url = "https://ai.api.nvidia.com/v1/retrieval/snowflake/arctic-embed-l/embeddings"
def encode(self, texts: list):
batch_size = 16
ress = []
token_count = 0
for i in range(0, len(texts), batch_size):
payload = {
"input": texts[i : i + batch_size],
"input_type": "query",
"model": self.model_name,
"encoding_format": "float",
"truncate": "END",
}
res = requests.post(self.base_url, headers=self.headers, json=payload).json()
ress.extend([d["embedding"] for d in res["data"]])
token_count += res["usage"]["total_tokens"]
return np.array(ress), token_count
def encode_queries(self, text):
embds, cnt = self.encode([text])
return np.array(embds[0]), cnt
class LmStudioEmbed(LocalAIEmbed):
def __init__(self, key, model_name, base_url):
if not base_url:
raise ValueError("Local llm url cannot be None")
if base_url.split("/")[-1] != "v1":
base_url = os.path.join(base_url, "v1")
self.client = OpenAI(api_key="lm-studio", base_url=base_url)
self.model_name = model_name
class OpenAI_APIEmbed(OpenAIEmbed):
def __init__(self, key, model_name, base_url):
if not base_url:
raise ValueError("url cannot be None")
if base_url.split("/")[-1] != "v1":
base_url = os.path.join(base_url, "v1")
self.client = OpenAI(api_key=key, base_url=base_url)
self.model_name = model_name.split("___")[0]
class CoHereEmbed(Base):
def __init__(self, key, model_name, base_url=None):
from cohere import Client
self.client = Client(api_key=key)
self.model_name = model_name
def encode(self, texts: list):
batch_size = 16
ress = []
token_count = 0
for i in range(0, len(texts), batch_size):
res = self.client.embed(
texts=texts[i : i + batch_size],
model=self.model_name,
input_type="search_document",
embedding_types=["float"],
)
ress.extend([d for d in res.embeddings.float])
token_count += res.meta.billed_units.input_tokens
return np.array(ress), token_count
def encode_queries(self, text):
res = self.client.embed(
texts=[text],
model=self.model_name,
input_type="search_query",
embedding_types=["float"],
)
return np.array(res.embeddings.float[0]), int(
res.meta.billed_units.input_tokens
)
class TogetherAIEmbed(OllamaEmbed):
def __init__(self, key, model_name, base_url="https://api.together.xyz/v1"):
if not base_url:
base_url = "https://api.together.xyz/v1"
super().__init__(key, model_name, base_url=base_url)
class PerfXCloudEmbed(OpenAIEmbed):
def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1"):
if not base_url:
base_url = "https://cloud.perfxlab.cn/v1"
super().__init__(key, model_name, base_url)
class UpstageEmbed(OpenAIEmbed):
def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar"):
if not base_url:
base_url = "https://api.upstage.ai/v1/solar"
super().__init__(key, model_name, base_url)
class SILICONFLOWEmbed(Base):
def __init__(
self, key, model_name, base_url="https://api.siliconflow.cn/v1/embeddings"
):
if not base_url:
base_url = "https://api.siliconflow.cn/v1/embeddings"
self.headers = {
"accept": "application/json",
"content-type": "application/json",
"authorization": f"Bearer {key}",
}
self.base_url = base_url
self.model_name = model_name
def encode(self, texts: list):
batch_size = 16
ress = []
token_count = 0
for i in range(0, len(texts), batch_size):
texts_batch = texts[i : i + batch_size]
payload = {
"model": self.model_name,
"input": texts_batch,
"encoding_format": "float",
}
res = requests.post(self.base_url, json=payload, headers=self.headers).json()
if "data" not in res or not isinstance(res["data"], list) or len(res["data"]) != len(texts_batch):
raise ValueError(f"SILICONFLOWEmbed.encode got invalid response from {self.base_url}")
ress.extend([d["embedding"] for d in res["data"]])
token_count += res["usage"]["total_tokens"]
return np.array(ress), token_count
def encode_queries(self, text):
payload = {
"model": self.model_name,
"input": text,
"encoding_format": "float",
}
res = requests.post(self.base_url, json=payload, headers=self.headers).json()
if "data" not in res or not isinstance(res["data"], list) or len(res["data"])!= 1:
raise ValueError(f"SILICONFLOWEmbed.encode_queries got invalid response from {self.base_url}")
return np.array(res["data"][0]["embedding"]), res["usage"]["total_tokens"]
class ReplicateEmbed(Base):
def __init__(self, key, model_name, base_url=None):
from replicate.client import Client
self.model_name = model_name
self.client = Client(api_token=key)
def encode(self, texts: list):
batch_size = 16
token_count = sum([num_tokens_from_string(text) for text in texts])
ress = []
for i in range(0, len(texts), batch_size):
res = self.client.run(self.model_name, input={"texts": texts[i : i + batch_size]})
ress.extend(res)
return np.array(ress), token_count
def encode_queries(self, text):
res = self.client.embed(self.model_name, input={"texts": [text]})
return np.array(res), num_tokens_from_string(text)
class BaiduYiyanEmbed(Base):
def __init__(self, key, model_name, base_url=None):
import qianfan
key = json.loads(key)
ak = key.get("yiyan_ak", "")
sk = key.get("yiyan_sk", "")
self.client = qianfan.Embedding(ak=ak, sk=sk)
self.model_name = model_name
def encode(self, texts: list, batch_size=16):
res = self.client.do(model=self.model_name, texts=texts).body
return (
np.array([r["embedding"] for r in res["data"]]),
res["usage"]["total_tokens"],
)
def encode_queries(self, text):
res = self.client.do(model=self.model_name, texts=[text]).body
return (
np.array([r["embedding"] for r in res["data"]]),
res["usage"]["total_tokens"],
)
class VoyageEmbed(Base):
def __init__(self, key, model_name, base_url=None):
import voyageai
self.client = voyageai.Client(api_key=key)
self.model_name = model_name
def encode(self, texts: list):
batch_size = 16
ress = []
token_count = 0
for i in range(0, len(texts), batch_size):
res = self.client.embed(
texts=texts[i : i + batch_size], model=self.model_name, input_type="document"
)
ress.extend(res.embeddings)
token_count += res.total_tokens
return np.array(ress), token_count
def encode_queries(self, text):
res = self.client.embed(
texts=text, model=self.model_name, input_type="query"
)
return np.array(res.embeddings)[0], res.total_tokens
class HuggingFaceEmbed(Base):
def __init__(self, key, model_name, base_url=None):
if not model_name:
raise ValueError("Model name cannot be None")
self.key = key
self.model_name = model_name.split("___")[0]
self.base_url = base_url or "http://127.0.0.1:8080"
def encode(self, texts: list):
embeddings = []
for text in texts:
response = requests.post(
f"{self.base_url}/embed",
json={"inputs": text},
headers={'Content-Type': 'application/json'}
)
if response.status_code == 200:
embedding = response.json()
embeddings.append(embedding[0])
else:
raise Exception(f"Error: {response.status_code} - {response.text}")
return np.array(embeddings), sum([num_tokens_from_string(text) for text in texts])
def encode_queries(self, text):
response = requests.post(
f"{self.base_url}/embed",
json={"inputs": text},
headers={'Content-Type': 'application/json'}
)
if response.status_code == 200:
embedding = response.json()
return np.array(embedding[0]), num_tokens_from_string(text)
else:
raise Exception(f"Error: {response.status_code} - {response.text}")
class VolcEngineEmbed(OpenAIEmbed):
def __init__(self, key, model_name, base_url="https://ark.cn-beijing.volces.com/api/v3"):
if not base_url:
base_url = "https://ark.cn-beijing.volces.com/api/v3"
ark_api_key = json.loads(key).get('ark_api_key', '')
model_name = json.loads(key).get('ep_id', '') + json.loads(key).get('endpoint_id', '')
super().__init__(ark_api_key,model_name,base_url)
|