File size: 29,877 Bytes
3079197
484e5ab
3079197
 
 
 
 
 
 
 
 
 
 
 
 
8bc2fc9
c037a22
6d597a0
c037a22
c9a1362
79ada0b
8f39e7a
3079197
8f9784a
3079197
 
 
83a0020
dbcbb17
6101699
c037a22
c87ddd7
1f5bc27
06a1df0
79ada0b
638a84e
3079197
 
 
 
08913be
3079197
 
e32ef75
 
 
3079197
2d09c38
c037a22
05dad97
c037a22
3079197
 
 
 
 
 
 
 
 
 
 
6101699
05dad97
dbcbb17
 
05dad97
 
3256beb
05dad97
 
22fe41e
05dad97
3256beb
05dad97
 
 
 
 
3079197
08913be
 
c87ddd7
3079197
79ada0b
 
08913be
3079197
08913be
 
3079197
9bf75d4
 
c037a22
9bf75d4
3079197
 
ba51460
 
 
 
e06e08c
3079197
 
08913be
 
 
49d1201
08913be
 
 
 
 
 
 
 
e32ef75
 
49d1201
e32ef75
 
3079197
 
5bd5c21
 
6ead7eb
 
 
 
 
5bd5c21
 
08913be
 
 
 
 
 
 
 
5bd5c21
 
d3dad46
 
6ead7eb
5bd5c21
5f6673f
29b8637
f711e2a
fa680e0
 
 
29b8637
 
5f6673f
d7bf446
 
 
 
 
 
 
 
 
3079197
e06e08c
08913be
3079197
 
08913be
3079197
08913be
c60dccb
 
 
 
 
 
 
 
08913be
c60dccb
 
 
 
 
 
 
 
 
21cb28c
c60dccb
 
 
 
3079197
 
c60dccb
08913be
c60dccb
e32ef75
c60dccb
 
22fe41e
21cb28c
c60dccb
5e0a689
 
 
e06e08c
5e0a689
 
 
08913be
adb65d7
 
 
 
ba51460
adb65d7
 
 
5e0a689
 
 
 
adb65d7
8f9784a
 
 
 
 
 
 
08913be
8f9784a
 
 
 
ba51460
8f9784a
 
 
 
 
 
ba51460
8f9784a
63df91a
 
a86164e
c037a22
 
a86164e
c037a22
eae0334
c037a22
eae0334
 
c037a22
a86164e
6101699
d55a6be
c037a22
a86164e
08913be
ba51460
 
a86164e
 
 
08913be
a86164e
 
 
 
ba51460
 
a86164e
 
 
 
 
 
63df91a
 
96edfc5
 
13b2570
63df91a
 
08913be
 
 
 
 
 
 
 
 
63df91a
 
 
 
 
a86164e
ba51460
3069c36
ba51460
 
 
6101699
d55a6be
ba51460
8bc2fc9
3069c36
22390c0
 
22fe41e
3069c36
ba51460
 
 
08913be
 
ba51460
 
 
 
 
3069c36
ba51460
 
 
 
3069c36
ba51460
c037a22
 
 
e5a1268
c037a22
 
 
 
 
 
 
 
 
08913be
c037a22
08913be
 
 
 
 
 
 
 
 
 
 
 
 
c037a22
 
 
b43a465
 
 
 
 
 
 
 
 
 
 
 
83a0020
b43a465
 
83a0020
b43a465
83a0020
b43a465
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4825b73
 
 
 
 
 
 
 
 
 
08913be
4825b73
08913be
 
 
 
 
 
 
 
 
4825b73
 
 
 
 
dffdcde
 
 
 
 
 
7b1ec89
 
 
dffdcde
 
 
 
08913be
dffdcde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57bca82
dffdcde
 
 
1f5bc27
 
 
08913be
1f5bc27
 
08913be
1f5bc27
 
08913be
 
 
 
 
 
 
 
 
 
 
1f5bc27
 
08913be
1f5bc27
 
 
 
 
 
5bd5c21
745354f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08913be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
745354f
 
 
 
5e7d900
 
6ead7eb
5e7d900
 
 
 
07dead3
 
5e7d900
29fdf3e
 
 
 
 
 
 
07dead3
29fdf3e
2e1c73c
 
 
 
 
 
 
 
 
 
08913be
 
 
 
 
 
 
 
 
 
 
 
 
 
2e1c73c
 
 
 
 
 
 
 
24b9cdf
2e1c73c
 
ce69533
 
5036aed
 
 
 
99ac12c
5036aed
38ccbb8
ce69533
 
 
 
 
89708fb
 
 
 
 
 
 
61bc209
 
16d7b7b
 
 
 
61bc209
16d7b7b
 
 
 
 
 
 
 
 
08913be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16d7b7b
 
 
 
 
 
 
 
7449fd0
 
16d7b7b
38ccbb8
 
 
 
 
 
 
 
 
08913be
 
 
 
 
 
 
 
38ccbb8
 
 
 
06a1df0
 
 
 
 
 
 
 
 
 
 
 
c9d78b3
06a1df0
 
 
 
 
 
 
 
 
 
 
 
b6bfae8
 
 
 
 
 
 
 
 
08913be
 
 
 
 
 
 
 
 
 
 
b6bfae8
 
 
 
 
449650c
086a0cb
 
 
 
 
 
 
0dec4cf
086a0cb
 
08913be
086a0cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dec4cf
c62f284
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import logging
import re
import threading
import requests
from huggingface_hub import snapshot_download
from zhipuai import ZhipuAI
import os
from abc import ABC
from ollama import Client
import dashscope
from openai import OpenAI
import numpy as np
import asyncio

from api import settings
from api.utils.file_utils import get_home_cache_dir
from rag.utils import num_tokens_from_string, truncate
import google.generativeai as genai 
import json


class Base(ABC):
    def __init__(self, key, model_name):
        pass

    def encode(self, texts: list):
        raise NotImplementedError("Please implement encode method!")

    def encode_queries(self, text: str):
        raise NotImplementedError("Please implement encode method!")


class DefaultEmbedding(Base):
    _model = None
    _model_lock = threading.Lock()
    def __init__(self, key, model_name, **kwargs):
        """
        If you have trouble downloading HuggingFace models, -_^ this might help!!

        For Linux:
        export HF_ENDPOINT=https://hf-mirror.com

        For Windows:
        Good luck
        ^_-

        """
        if not settings.LIGHTEN and not DefaultEmbedding._model:
            with DefaultEmbedding._model_lock:
                from FlagEmbedding import FlagModel
                import torch
                if not DefaultEmbedding._model:
                    try:
                        DefaultEmbedding._model = FlagModel(os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
                                                            query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
                                                            use_fp16=torch.cuda.is_available())
                    except Exception:
                        model_dir = snapshot_download(repo_id="BAAI/bge-large-zh-v1.5",
                                                      local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
                                                      local_dir_use_symlinks=False)
                        DefaultEmbedding._model = FlagModel(model_dir,
                                                            query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
                                                            use_fp16=torch.cuda.is_available())
        self._model = DefaultEmbedding._model

    def encode(self, texts: list):
        batch_size = 16
        texts = [truncate(t, 2048) for t in texts]
        token_count = 0
        for t in texts:
            token_count += num_tokens_from_string(t)
        ress = []
        for i in range(0, len(texts), batch_size):
            ress.extend(self._model.encode(texts[i:i + batch_size]).tolist())
        return np.array(ress), token_count

    def encode_queries(self, text: str):
        token_count = num_tokens_from_string(text)
        return self._model.encode_queries([text]).tolist()[0], token_count


class OpenAIEmbed(Base):
    def __init__(self, key, model_name="text-embedding-ada-002",
                 base_url="https://api.openai.com/v1"):
        if not base_url:
            base_url = "https://api.openai.com/v1"
        self.client = OpenAI(api_key=key, base_url=base_url)
        self.model_name = model_name

    def encode(self, texts: list):
        # OpenAI requires batch size <=16
        batch_size = 16
        texts = [truncate(t, 8191) for t in texts]
        ress = []
        total_tokens = 0
        for i in range(0, len(texts), batch_size):
            res = self.client.embeddings.create(input=texts[i:i + batch_size],
                                                model=self.model_name)
            ress.extend([d.embedding for d in res.data])
            total_tokens += res.usage.total_tokens
        return np.array(ress), total_tokens

    def encode_queries(self, text):
        res = self.client.embeddings.create(input=[truncate(text, 8191)],
                                            model=self.model_name)
        return np.array(res.data[0].embedding), res.usage.total_tokens


class LocalAIEmbed(Base):
    def __init__(self, key, model_name, base_url):
        if not base_url:
            raise ValueError("Local embedding model url cannot be None")
        if base_url.split("/")[-1] != "v1":
            base_url = os.path.join(base_url, "v1")
        self.client = OpenAI(api_key="empty", base_url=base_url)
        self.model_name = model_name.split("___")[0]

    def encode(self, texts: list):
        batch_size = 16
        ress = []
        for i in range(0, len(texts), batch_size):
            res = self.client.embeddings.create(input=texts[i:i + batch_size], model=self.model_name)
            ress.extend([d.embedding for d in res.data])
        # local embedding for LmStudio donot count tokens
        return np.array(ress), 1024

    def encode_queries(self, text):
        embds, cnt = self.encode([text])
        return np.array(embds[0]), cnt


class AzureEmbed(OpenAIEmbed):
    def __init__(self, key, model_name, **kwargs):
        from openai.lib.azure import AzureOpenAI
        api_key = json.loads(key).get('api_key', '')
        api_version = json.loads(key).get('api_version', '2024-02-01')
        self.client = AzureOpenAI(api_key=api_key, azure_endpoint=kwargs["base_url"], api_version=api_version)
        self.model_name = model_name


class BaiChuanEmbed(OpenAIEmbed):
    def __init__(self, key,
                 model_name='Baichuan-Text-Embedding',
                 base_url='https://api.baichuan-ai.com/v1'):
        if not base_url:
            base_url = "https://api.baichuan-ai.com/v1"
        super().__init__(key, model_name, base_url)


class QWenEmbed(Base):
    def __init__(self, key, model_name="text_embedding_v2", **kwargs):
        self.key = key
        self.model_name = model_name

    def encode(self, texts: list):
        import dashscope
        batch_size = 4
        try:
            res = []
            token_count = 0
            texts = [truncate(t, 2048) for t in texts]
            for i in range(0, len(texts), batch_size):
                resp = dashscope.TextEmbedding.call(
                    model=self.model_name,
                    input=texts[i:i + batch_size],
                    api_key=self.key,
                    text_type="document"
                )
                embds = [[] for _ in range(len(resp["output"]["embeddings"]))]
                for e in resp["output"]["embeddings"]:
                    embds[e["text_index"]] = e["embedding"]
                res.extend(embds)
                token_count += resp["usage"]["total_tokens"]
            return np.array(res), token_count
        except Exception as e:
            raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name)
        return np.array([]), 0

    def encode_queries(self, text):
        try:
            resp = dashscope.TextEmbedding.call(
                model=self.model_name,
                input=text[:2048],
                api_key=self.key,
                text_type="query"
            )
            return np.array(resp["output"]["embeddings"][0]
                            ["embedding"]), resp["usage"]["total_tokens"]
        except Exception:
            raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name)
        return np.array([]), 0


class ZhipuEmbed(Base):
    def __init__(self, key, model_name="embedding-2", **kwargs):
        self.client = ZhipuAI(api_key=key)
        self.model_name = model_name

    def encode(self, texts: list):
        arr = []
        tks_num = 0
        for txt in texts:
            res = self.client.embeddings.create(input=txt,
                                                model=self.model_name)
            arr.append(res.data[0].embedding)
            tks_num += res.usage.total_tokens
        return np.array(arr), tks_num

    def encode_queries(self, text):
        res = self.client.embeddings.create(input=text,
                                            model=self.model_name)
        return np.array(res.data[0].embedding), res.usage.total_tokens


class OllamaEmbed(Base):
    def __init__(self, key, model_name, **kwargs):
        self.client = Client(host=kwargs["base_url"])
        self.model_name = model_name

    def encode(self, texts: list):
        arr = []
        tks_num = 0
        for txt in texts:
            res = self.client.embeddings(prompt=txt,
                                         model=self.model_name)
            arr.append(res["embedding"])
            tks_num += 128
        return np.array(arr), tks_num

    def encode_queries(self, text):
        res = self.client.embeddings(prompt=text,
                                     model=self.model_name)
        return np.array(res["embedding"]), 128


class FastEmbed(Base):
    _model = None

    def __init__(
            self,
            key: str | None = None,
            model_name: str = "BAAI/bge-small-en-v1.5",
            cache_dir: str | None = None,
            threads: int | None = None,
            **kwargs,
    ):
        if not settings.LIGHTEN and not FastEmbed._model:
            from fastembed import TextEmbedding
            self._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)

    def encode(self, texts: list):
        # Using the internal tokenizer to encode the texts and get the total
        # number of tokens
        encodings = self._model.model.tokenizer.encode_batch(texts)
        total_tokens = sum(len(e) for e in encodings)

        embeddings = [e.tolist() for e in self._model.embed(texts, batch_size=16)]

        return np.array(embeddings), total_tokens

    def encode_queries(self, text: str):
        # Using the internal tokenizer to encode the texts and get the total
        # number of tokens
        encoding = self._model.model.tokenizer.encode(text)
        embedding = next(self._model.query_embed(text)).tolist()

        return np.array(embedding), len(encoding.ids)


class XinferenceEmbed(Base):
    def __init__(self, key, model_name="", base_url=""):
        if base_url.split("/")[-1] != "v1":
            base_url = os.path.join(base_url, "v1")
        self.client = OpenAI(api_key=key, base_url=base_url)
        self.model_name = model_name

    def encode(self, texts: list):
        batch_size = 16
        ress = []
        total_tokens = 0
        for i in range(0, len(texts), batch_size):
            res = self.client.embeddings.create(input=texts[i:i + batch_size], model=self.model_name)
            ress.extend([d.embedding for d in res.data])
            total_tokens += res.usage.total_tokens
        return np.array(ress), total_tokens

    def encode_queries(self, text):
        res = self.client.embeddings.create(input=[text],
                                            model=self.model_name)
        return np.array(res.data[0].embedding), res.usage.total_tokens


class YoudaoEmbed(Base):
    _client = None

    def __init__(self, key=None, model_name="maidalun1020/bce-embedding-base_v1", **kwargs):
        if not settings.LIGHTEN and not YoudaoEmbed._client:
            from BCEmbedding import EmbeddingModel as qanthing
            try:
                logging.info("LOADING BCE...")
                YoudaoEmbed._client = qanthing(model_name_or_path=os.path.join(
                    get_home_cache_dir(),
                    "bce-embedding-base_v1"))
            except Exception:
                YoudaoEmbed._client = qanthing(
                    model_name_or_path=model_name.replace(
                        "maidalun1020", "InfiniFlow"))

    def encode(self, texts: list):
        batch_size = 10
        res = []
        token_count = 0
        for t in texts:
            token_count += num_tokens_from_string(t)
        for i in range(0, len(texts), batch_size):
            embds = YoudaoEmbed._client.encode(texts[i:i + batch_size])
            res.extend(embds)
        return np.array(res), token_count

    def encode_queries(self, text):
        embds = YoudaoEmbed._client.encode([text])
        return np.array(embds[0]), num_tokens_from_string(text)


class JinaEmbed(Base):
    def __init__(self, key, model_name="jina-embeddings-v3",
                 base_url="https://api.jina.ai/v1/embeddings"):

        self.base_url = "https://api.jina.ai/v1/embeddings"
        self.headers = {
            "Content-Type": "application/json",
            "Authorization": f"Bearer {key}"
        }
        self.model_name = model_name

    def encode(self, texts: list):
        texts = [truncate(t, 8196) for t in texts]
        batch_size = 16
        ress = []
        token_count = 0
        for i in range(0, len(texts), batch_size):
            data = {
                "model": self.model_name,
                "input": texts[i:i + batch_size],
                'encoding_type': 'float'
            }
            res = requests.post(self.base_url, headers=self.headers, json=data).json()
            ress.extend([d["embedding"] for d in res["data"]])
            token_count += res["usage"]["total_tokens"]
        return np.array(ress), token_count

    def encode_queries(self, text):
        embds, cnt = self.encode([text])
        return np.array(embds[0]), cnt


class InfinityEmbed(Base):
    _model = None

    def __init__(
            self,
            model_names: list[str] = ("BAAI/bge-small-en-v1.5",),
            engine_kwargs: dict = {},
            key = None,
    ):

        from infinity_emb import EngineArgs
        from infinity_emb.engine import AsyncEngineArray

        self._default_model = model_names[0]
        self.engine_array = AsyncEngineArray.from_args([EngineArgs(model_name_or_path = model_name, **engine_kwargs) for model_name in model_names])

    async def _embed(self, sentences: list[str], model_name: str = ""):
        if not model_name:
            model_name = self._default_model
        engine = self.engine_array[model_name]
        was_already_running = engine.is_running
        if not was_already_running:
            await engine.astart()
        embeddings, usage = await engine.embed(sentences=sentences)
        if not was_already_running:
            await engine.astop()
        return embeddings, usage

    def encode(self, texts: list[str], model_name: str = "") -> tuple[np.ndarray, int]:
        # Using the internal tokenizer to encode the texts and get the total
        # number of tokens
        embeddings, usage = asyncio.run(self._embed(texts, model_name))
        return np.array(embeddings), usage

    def encode_queries(self, text: str) -> tuple[np.ndarray, int]:
        # Using the internal tokenizer to encode the texts and get the total
        # number of tokens
        return self.encode([text])


class MistralEmbed(Base):
    def __init__(self, key, model_name="mistral-embed",
                 base_url=None):
        from mistralai.client import MistralClient
        self.client = MistralClient(api_key=key)
        self.model_name = model_name

    def encode(self, texts: list):
        texts = [truncate(t, 8196) for t in texts]
        batch_size = 16
        ress = []
        token_count = 0
        for i in range(0, len(texts), batch_size):
            res = self.client.embeddings(input=texts[i:i + batch_size],
                                        model=self.model_name)
            ress.extend([d.embedding for d in res.data])
            token_count += res.usage.total_tokens
        return np.array(ress), token_count

    def encode_queries(self, text):
        res = self.client.embeddings(input=[truncate(text, 8196)],
                                            model=self.model_name)
        return np.array(res.data[0].embedding), res.usage.total_tokens


class BedrockEmbed(Base):
    def __init__(self, key, model_name,
                 **kwargs):
        import boto3
        self.bedrock_ak = json.loads(key).get('bedrock_ak', '')
        self.bedrock_sk = json.loads(key).get('bedrock_sk', '')
        self.bedrock_region = json.loads(key).get('bedrock_region', '')
        self.model_name = model_name
        self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region,
                                   aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)

    def encode(self, texts: list):
        texts = [truncate(t, 8196) for t in texts]
        embeddings = []
        token_count = 0
        for text in texts:
            if self.model_name.split('.')[0] == 'amazon':
                body = {"inputText": text}
            elif self.model_name.split('.')[0] == 'cohere':
                body = {"texts": [text], "input_type": 'search_document'}

            response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
            model_response = json.loads(response["body"].read())
            embeddings.extend([model_response["embedding"]])
            token_count += num_tokens_from_string(text)

        return np.array(embeddings), token_count

    def encode_queries(self, text):
        embeddings = []
        token_count = num_tokens_from_string(text)
        if self.model_name.split('.')[0] == 'amazon':
            body = {"inputText": truncate(text, 8196)}
        elif self.model_name.split('.')[0] == 'cohere':
            body = {"texts": [truncate(text, 8196)], "input_type": 'search_query'}

        response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
        model_response = json.loads(response["body"].read())
        embeddings.extend(model_response["embedding"])

        return np.array(embeddings), token_count

class GeminiEmbed(Base):
    def __init__(self, key, model_name='models/text-embedding-004',
                 **kwargs):
        self.key = key
        self.model_name = 'models/' + model_name
        
    def encode(self, texts: list):
        texts = [truncate(t, 2048) for t in texts]
        token_count = sum(num_tokens_from_string(text) for text in texts)
        genai.configure(api_key=self.key)
        batch_size = 16
        ress = []
        for i in range(0, len(texts), batch_size):
            result = genai.embed_content(
                model=self.model_name,
                content=texts[i, i + batch_size],
                task_type="retrieval_document",
                title="Embedding of single string")
            ress.extend(result['embedding'])
        return np.array(ress),token_count
    
    def encode_queries(self, text):
        genai.configure(api_key=self.key)
        result = genai.embed_content(
            model=self.model_name,
            content=truncate(text,2048),
            task_type="retrieval_document",
            title="Embedding of single string")
        token_count = num_tokens_from_string(text)
        return np.array(result['embedding']),token_count

class NvidiaEmbed(Base):
    def __init__(
        self, key, model_name, base_url="https://integrate.api.nvidia.com/v1/embeddings"
    ):
        if not base_url:
            base_url = "https://integrate.api.nvidia.com/v1/embeddings"
        self.api_key = key
        self.base_url = base_url
        self.headers = {
            "accept": "application/json",
            "Content-Type": "application/json",
            "authorization": f"Bearer {self.api_key}",
        }
        self.model_name = model_name
        if model_name == "nvidia/embed-qa-4":
            self.base_url = "https://ai.api.nvidia.com/v1/retrieval/nvidia/embeddings"
            self.model_name = "NV-Embed-QA"
        if model_name == "snowflake/arctic-embed-l":
            self.base_url = "https://ai.api.nvidia.com/v1/retrieval/snowflake/arctic-embed-l/embeddings"

    def encode(self, texts: list):
        batch_size = 16
        ress = []
        token_count = 0
        for i in range(0, len(texts), batch_size):
            payload = {
                "input": texts[i : i + batch_size],
                "input_type": "query",
                "model": self.model_name,
                "encoding_format": "float",
                "truncate": "END",
            }
            res = requests.post(self.base_url, headers=self.headers, json=payload).json()
            ress.extend([d["embedding"] for d in res["data"]])
            token_count += res["usage"]["total_tokens"]
        return np.array(ress), token_count

    def encode_queries(self, text):
        embds, cnt = self.encode([text])
        return np.array(embds[0]), cnt


class LmStudioEmbed(LocalAIEmbed):
    def __init__(self, key, model_name, base_url):
        if not base_url:
            raise ValueError("Local llm url cannot be None")
        if base_url.split("/")[-1] != "v1":
            base_url = os.path.join(base_url, "v1")
        self.client = OpenAI(api_key="lm-studio", base_url=base_url)
        self.model_name = model_name


class OpenAI_APIEmbed(OpenAIEmbed):
    def __init__(self, key, model_name, base_url):
        if not base_url:
            raise ValueError("url cannot be None")
        if base_url.split("/")[-1] != "v1":
            base_url = os.path.join(base_url, "v1")
        self.client = OpenAI(api_key=key, base_url=base_url)
        self.model_name = model_name.split("___")[0]


class CoHereEmbed(Base):
    def __init__(self, key, model_name, base_url=None):
        from cohere import Client

        self.client = Client(api_key=key)
        self.model_name = model_name

    def encode(self, texts: list):
        batch_size = 16
        ress = []
        token_count = 0
        for i in range(0, len(texts), batch_size):
            res = self.client.embed(
                texts=texts[i : i + batch_size],
                model=self.model_name,
                input_type="search_document",
                embedding_types=["float"],
            )
            ress.extend([d for d in res.embeddings.float])
            token_count += res.meta.billed_units.input_tokens
        return np.array(ress), token_count

    def encode_queries(self, text):
        res = self.client.embed(
            texts=[text],
            model=self.model_name,
            input_type="search_query",
            embedding_types=["float"],
        )
        return np.array(res.embeddings.float[0]), int(
            res.meta.billed_units.input_tokens
        )


class TogetherAIEmbed(OllamaEmbed):
    def __init__(self, key, model_name, base_url="https://api.together.xyz/v1"):
        if not base_url:
            base_url = "https://api.together.xyz/v1"
        super().__init__(key, model_name, base_url=base_url)


class PerfXCloudEmbed(OpenAIEmbed):
    def __init__(self, key, model_name, base_url="https://cloud.perfxlab.cn/v1"):
        if not base_url:
            base_url = "https://cloud.perfxlab.cn/v1"
        super().__init__(key, model_name, base_url)


class UpstageEmbed(OpenAIEmbed):
    def __init__(self, key, model_name, base_url="https://api.upstage.ai/v1/solar"):
        if not base_url:
            base_url = "https://api.upstage.ai/v1/solar"
        super().__init__(key, model_name, base_url)


class SILICONFLOWEmbed(Base):
    def __init__(
        self, key, model_name, base_url="https://api.siliconflow.cn/v1/embeddings"
    ):
        if not base_url:
            base_url = "https://api.siliconflow.cn/v1/embeddings"
        self.headers = {
            "accept": "application/json",
            "content-type": "application/json",
            "authorization": f"Bearer {key}",
        }
        self.base_url = base_url
        self.model_name = model_name

    def encode(self, texts: list):
        batch_size = 16
        ress = []
        token_count = 0
        for i in range(0, len(texts), batch_size):
            texts_batch = texts[i : i + batch_size]
            payload = {
                "model": self.model_name,
                "input": texts_batch,
                "encoding_format": "float",
            }
            res = requests.post(self.base_url, json=payload, headers=self.headers).json()
            if "data" not in res or not isinstance(res["data"], list) or len(res["data"]) != len(texts_batch):
                raise ValueError(f"SILICONFLOWEmbed.encode got invalid response from {self.base_url}")
            ress.extend([d["embedding"] for d in res["data"]])
            token_count += res["usage"]["total_tokens"]
        return np.array(ress), token_count

    def encode_queries(self, text):
        payload = {
            "model": self.model_name,
            "input": text,
            "encoding_format": "float",
        }
        res = requests.post(self.base_url, json=payload, headers=self.headers).json()
        if "data" not in res or not isinstance(res["data"], list) or len(res["data"])!= 1:
            raise ValueError(f"SILICONFLOWEmbed.encode_queries got invalid response from {self.base_url}")
        return np.array(res["data"][0]["embedding"]), res["usage"]["total_tokens"]


class ReplicateEmbed(Base):
    def __init__(self, key, model_name, base_url=None):
        from replicate.client import Client

        self.model_name = model_name
        self.client = Client(api_token=key)

    def encode(self, texts: list):
        batch_size = 16
        token_count = sum([num_tokens_from_string(text) for text in texts])
        ress = []
        for i in range(0, len(texts), batch_size):
            res = self.client.run(self.model_name, input={"texts": texts[i : i + batch_size]})
            ress.extend(res)
        return np.array(ress), token_count

    def encode_queries(self, text):
        res = self.client.embed(self.model_name, input={"texts": [text]})
        return np.array(res), num_tokens_from_string(text)


class BaiduYiyanEmbed(Base):
    def __init__(self, key, model_name, base_url=None):
        import qianfan

        key = json.loads(key)
        ak = key.get("yiyan_ak", "")
        sk = key.get("yiyan_sk", "")
        self.client = qianfan.Embedding(ak=ak, sk=sk)
        self.model_name = model_name

    def encode(self, texts: list, batch_size=16):
        res = self.client.do(model=self.model_name, texts=texts).body
        return (
            np.array([r["embedding"] for r in res["data"]]),
            res["usage"]["total_tokens"],
        )

    def encode_queries(self, text):
        res = self.client.do(model=self.model_name, texts=[text]).body
        return (
            np.array([r["embedding"] for r in res["data"]]),
            res["usage"]["total_tokens"],
        )


class VoyageEmbed(Base):
    def __init__(self, key, model_name, base_url=None):
        import voyageai

        self.client = voyageai.Client(api_key=key)
        self.model_name = model_name

    def encode(self, texts: list):
        batch_size = 16
        ress = []
        token_count = 0
        for i in range(0, len(texts), batch_size):
            res = self.client.embed(
                texts=texts[i : i + batch_size], model=self.model_name, input_type="document"
            )
            ress.extend(res.embeddings)
            token_count += res.total_tokens
        return np.array(ress), token_count

    def encode_queries(self, text):
        res = self.client.embed(
            texts=text, model=self.model_name, input_type="query"
            )
        return np.array(res.embeddings)[0], res.total_tokens


class HuggingFaceEmbed(Base):
    def __init__(self, key, model_name, base_url=None):
        if not model_name:
            raise ValueError("Model name cannot be None")
        self.key = key
        self.model_name = model_name.split("___")[0]
        self.base_url = base_url or "http://127.0.0.1:8080"

    def encode(self, texts: list):
        embeddings = []
        for text in texts:
            response = requests.post(
                f"{self.base_url}/embed",
                json={"inputs": text},
                headers={'Content-Type': 'application/json'}
            )
            if response.status_code == 200:
                embedding = response.json()
                embeddings.append(embedding[0])
            else:
                raise Exception(f"Error: {response.status_code} - {response.text}")
        return np.array(embeddings), sum([num_tokens_from_string(text) for text in texts])

    def encode_queries(self, text):
        response = requests.post(
            f"{self.base_url}/embed",
            json={"inputs": text},
            headers={'Content-Type': 'application/json'}
        )
        if response.status_code == 200:
            embedding = response.json()
            return np.array(embedding[0]), num_tokens_from_string(text)
        else:
            raise Exception(f"Error: {response.status_code} - {response.text}")


class VolcEngineEmbed(OpenAIEmbed):
    def __init__(self, key, model_name, base_url="https://ark.cn-beijing.volces.com/api/v3"):
        if not base_url:
            base_url = "https://ark.cn-beijing.volces.com/api/v3"
        ark_api_key = json.loads(key).get('ark_api_key', '')
        model_name = json.loads(key).get('ep_id', '') + json.loads(key).get('endpoint_id', '')
        super().__init__(ark_api_key,model_name,base_url)