Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import os
|
4 |
+
import gradio as gr
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
+
import torch
|
7 |
+
|
8 |
+
# Load Hugging Face token (paste yours below if needed)
|
9 |
+
os.environ['HF_TOKEN'] = 'HF_TOKEN'
|
10 |
+
|
11 |
+
model_id = "ibm-granite/granite-3.3-2b-instruct"
|
12 |
+
token = os.getenv("HF_TOKEN")
|
13 |
+
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=token)
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float32, token=token)
|
16 |
+
|
17 |
+
# Core generation function
|
18 |
+
def generate_response(prompt):
|
19 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
20 |
+
outputs = model.generate(**inputs, max_new_tokens=200, do_sample=True)
|
21 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
22 |
+
|
23 |
+
# Four feature functions
|
24 |
+
def disease_prediction(symptoms):
|
25 |
+
prompt = f"Patient has symptoms: {symptoms}. What could be the possible conditions?"
|
26 |
+
return generate_response(prompt)
|
27 |
+
|
28 |
+
def treatment_plan(condition):
|
29 |
+
prompt = f"What is the treatment plan for {condition}? Include medications, lifestyle changes, and follow-up."
|
30 |
+
return generate_response(prompt)
|
31 |
+
|
32 |
+
def health_analytics(vitals):
|
33 |
+
prompt = f"Analyze this health data and give insights: {vitals}"
|
34 |
+
return generate_response(prompt)
|
35 |
+
|
36 |
+
def patient_chat(query):
|
37 |
+
prompt = f"Medical Question: {query}"
|
38 |
+
return generate_response(prompt)
|
39 |
+
|
40 |
+
# Custom CSS
|
41 |
+
custom_css = """
|
42 |
+
body {
|
43 |
+
font-family: 'Segoe UI', sans-serif;
|
44 |
+
background-color: #f8f9fa;
|
45 |
+
}
|
46 |
+
h1, h2 {
|
47 |
+
color: #114B5F;
|
48 |
+
font-weight: bold;
|
49 |
+
}
|
50 |
+
.gradio-container {
|
51 |
+
padding: 20px !important;
|
52 |
+
}
|
53 |
+
textarea {
|
54 |
+
border-radius: 10px !important;
|
55 |
+
border: 1px solid #ccc !important;
|
56 |
+
}
|
57 |
+
button {
|
58 |
+
background-color: #114B5F !important;
|
59 |
+
color: white !important;
|
60 |
+
border-radius: 8px !important;
|
61 |
+
padding: 10px 16px !important;
|
62 |
+
}
|
63 |
+
.tabitem {
|
64 |
+
background-color: #d6ecf3 !important;
|
65 |
+
padding: 10px;
|
66 |
+
border-radius: 10px;
|
67 |
+
}
|
68 |
+
"""
|
69 |
+
|
70 |
+
# Gradio Interface
|
71 |
+
with gr.Blocks(css=custom_css) as demo:
|
72 |
+
gr.Markdown("# π₯ HealthAI - Generative Healthcare Assistant")
|
73 |
+
|
74 |
+
with gr.Tab("π§ Disease Prediction"):
|
75 |
+
with gr.Column():
|
76 |
+
symptom_input = gr.Textbox(label="Enter your symptoms")
|
77 |
+
disease_output = gr.Textbox(label="Predicted Conditions")
|
78 |
+
predict_btn = gr.Button("Predict")
|
79 |
+
predict_btn.click(disease_prediction, inputs=symptom_input, outputs=disease_output)
|
80 |
+
|
81 |
+
with gr.Tab("π Treatment Plans"):
|
82 |
+
with gr.Column():
|
83 |
+
condition_input = gr.Textbox(label="Enter diagnosed condition")
|
84 |
+
treatment_output = gr.Textbox(label="Recommended Treatment")
|
85 |
+
treatment_btn = gr.Button("Get Treatment Plan")
|
86 |
+
treatment_btn.click(treatment_plan, inputs=condition_input, outputs=treatment_output)
|
87 |
+
|
88 |
+
with gr.Tab("π Health Analytics"):
|
89 |
+
with gr.Column():
|
90 |
+
vitals_input = gr.Textbox(label="Enter vitals (e.g., heart rate: 80, BP: 120/80...)")
|
91 |
+
analytics_output = gr.Textbox(label="AI Insights")
|
92 |
+
analytics_btn = gr.Button("Analyze")
|
93 |
+
analytics_btn.click(health_analytics, inputs=vitals_input, outputs=analytics_output)
|
94 |
+
|
95 |
+
with gr.Tab("π¬ Patient Chat"):
|
96 |
+
with gr.Column():
|
97 |
+
query_input = gr.Textbox(label="Ask a health-related question")
|
98 |
+
chat_output = gr.Textbox(label="Response")
|
99 |
+
chat_btn = gr.Button("Ask")
|
100 |
+
chat_btn.click(patient_chat, inputs=query_input, outputs=chat_output)
|
101 |
+
|
102 |
+
demo.launch()
|