import gradio as gr import torch import torchvision.transforms as transforms from PIL import Image # Define the CNN model class CNN(torch.nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = torch.nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1) self.conv2 = torch.nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) self.pool = torch.nn.MaxPool2d(2, 2) self.fc1 = torch.nn.Linear(64 * 14 * 14, 128) self.fc2 = torch.nn.Linear(128, 10) self.relu = torch.nn.ReLU() self.dropout = torch.nn.Dropout(0.25) def forward(self, x): x = self.relu(self.conv1(x)) x = self.pool(self.relu(self.conv2(x))) x = x.view(x.size(0), -1) # Flatten dynamically based on batch size x = self.relu(self.fc1(x)) x = self.dropout(x) x = self.fc2(x) return x # Load the trained model model = CNN() model.load_state_dict(torch.load("pytorch_model.bin", map_location=torch.device('cpu'), weights_only=True)) model.eval() # Define the prediction function def predict(image): transform = transforms.Compose([ transforms.Grayscale(), # Ensure the input image is grayscale transforms.Resize((28, 28)), # Resize the image to 28x28 pixels transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)) # Normalize the image ]) image_tensor = transform(image).unsqueeze(0) # Add batch dimension with torch.no_grad(): output = model(image_tensor) predicted_class = output.argmax(dim=1).item() # Get the predicted class return f"Predicted digit: {predicted_class}" # Create the Gradio interface interface = gr.Interface( fn=predict, inputs=gr.Image(type="pil"), # Updated input component outputs="text", title="Handwritten Digit Classifier", description="Upload an image of a handwritten digit, and the model will predict the digit." ) # Launch the Gradio app if __name__ == "__main__": interface.launch() # Removed share=True for Hugging Face Spaces