from flask import Flask, request, jsonify from flask_cors import CORS from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline, UniPCMultistepScheduler, DPMSolverMultistepScheduler import torch import os from PIL import Image import base64 import time import logging from huggingface_hub import list_repo_files import psutil # Disable GPU detection (remove these lines if GPU is available) os.environ["CUDA_VISIBLE_DEVICES"] = "" os.environ["CUDA_DEVICE_ORDER"] = "" os.environ["TORCH_CUDA_ARCH_LIST"] = "" torch.set_default_device("cpu") app = Flask(__name__, static_folder='static') CORS(app) # Configure logging logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # Log device, memory, and code version logger.info(f"Device in use: {torch.device('cpu')}") logger.info(f"Available memory: {psutil.virtual_memory().available / (1024 ** 3):.2f} GB") logger.info("Running app.py version: 2025-07-16-fix-type-mismatch") # Model cache model_cache = {} model_paths = { "ssd-1b": "segmind/SSD-1B", # Using segmind/SSD-1B for testing "sd-v1-5": "remiai3/stable-diffusion-v1-5" } # Image ratio to dimensions (optimized for CPU, multiple of 8) ratio_to_dims = { "1:1": (512, 512), # Default for SSD-1B "3:4": (384, 512), "16:9": (512, 288) } def load_model(model_id): if model_id not in model_cache: logger.info(f"Loading model {model_id} from {model_paths[model_id]}") logger.info(f"HF_TOKEN present: {os.getenv('HF_TOKEN') is not None}") try: # Log repository files for debugging repo_files = list_repo_files(model_paths[model_id], token=os.getenv("HF_TOKEN")) logger.info(f"Files in {model_paths[model_id]}: {repo_files}") # Choose pipeline based on model pipe_class = StableDiffusionXLPipeline if model_id == "ssd-1b" else StableDiffusionPipeline pipe = pipe_class.from_pretrained( model_paths[model_id], torch_dtype=torch.float32, use_auth_token=os.getenv("HF_TOKEN"), use_safetensors=True, low_cpu_mem_usage=True ) # Use UniPCMultistepScheduler for SSD-1B, DPMSolver for SD-v1-5 scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) if model_id == "ssd-1b" else DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.scheduler = scheduler pipe.enable_attention_slicing() pipe.to(torch.device("cpu")) # Change to "cuda" if GPU is available model_cache[model_id] = pipe logger.info(f"Model {model_id} loaded successfully") except Exception as e: logger.error(f"Error loading model {model_id}: {str(e)}") raise return model_cache[model_id] @app.route('/') def index(): return app.send_static_file('index.html') @app.route('/assets/') def serve_assets(filename): return app.send_static_file(os.path.join('assets', filename)) @app.route('/generate', methods=['POST']) def generate(): try: data = request.json logger.info(f"Received JSON payload: {data}") model_id = data.get('model', 'ssd-1b') prompt = data.get('prompt', '') ratio = data.get('ratio', '1:1') # Handle num_images with type checking num_images_raw = data.get('num_images', 1) logger.info(f"Raw num_images: {num_images_raw} (type: {type(num_images_raw)})") try: num_images = int(num_images_raw) num_images = min(num_images, 4) if num_images < 1: raise ValueError("num_images must be at least 1") except (ValueError, TypeError): logger.error(f"Invalid num_images value: {num_images_raw}") return jsonify({"error": "num_images must be a valid integer"}), 400 # Handle guidance_scale with type checking guidance_scale_raw = data.get('guidance_scale', 7.5) logger.info(f"Raw guidance_scale: {guidance_scale_raw} (type: {type(guidance_scale_raw)})") try: guidance_scale = float(guidance_scale_raw) guidance_scale = min(max(guidance_scale, 1.0), 20.0) # Clamp between 1.0 and 20.0 except (ValueError, TypeError): logger.error(f"Invalid guidance_scale value: {guidance_scale_raw}") return jsonify({"error": "guidance_scale must be a valid number"}), 400 # Log input parameters logger.info(f"Generating with model: {model_id}, prompt: {prompt}, ratio: {ratio}, num_images: {num_images}, guidance_scale: {guidance_scale}") if not prompt: return jsonify({"error": "Prompt is required"}), 400 if len(prompt) > 512: return jsonify({"error": "Prompt is too long (max 512 characters)"}), 400 if model_id == 'ssd-1b' and num_images > 1: return jsonify({"error": "SSD-1B allows only 1 image per generation"}), 400 if model_id == 'ssd-1b' and ratio != '1:1': return jsonify({"error": "SSD-1B supports only 1:1 ratio"}), 400 if model_id == 'sd-v1-5' and len(prompt.split()) > 77: return jsonify({"error": "Prompt exceeds 77 tokens for Stable Diffusion v1.5"}), 400 width, height = ratio_to_dims.get(ratio, (512, 512)) if width % 8 != 0 or height % 8 != 0: return jsonify({"error": "Width and height must be multiples of 8"}), 400 # Log memory before generation logger.info(f"Memory before generation: {psutil.virtual_memory().available / (1024 ** 3):.2f} GB") pipe = load_model(model_id) pipe.to(torch.device("cpu")) # Change to "cuda" if GPU is available images = [] num_inference_steps = 30 if model_id == 'ssd-1b' else 30 # Unified steps for stability try: for _ in range(num_images): image = pipe( prompt=prompt, height=height, width=width, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale ).images[0] images.append(image) except IndexError as e: logger.error(f"IndexError during generation: {str(e)}") return jsonify({"error": f"Generation failed due to invalid index access: {str(e)}"}), 500 except Exception as e: logger.error(f"Unexpected error during generation: {str(e)}") return jsonify({"error": f"Generation failed: {str(e)}"}), 500 output_dir = "outputs" os.makedirs(output_dir, exist_ok=True) image_urls = [] for i, img in enumerate(images): img_path = os.path.join(output_dir, f"generated_{int(time.time())}_{i}.png") img.save(img_path) with open(img_path, "rb") as f: img_data = base64.b64encode(f.read()).decode('utf-8') image_urls.append(f"data:image/png;base64,{img_data}") os.remove(img_path) logger.info(f"Generation successful, returning {len(image_urls)} images") return jsonify({"images": image_urls}) except Exception as e: logger.error(f"Image generation failed: {str(e)}") return jsonify({"error": f"Image generation failed: {str(e)}"}), 500 if __name__ == '__main__': app.run(host='0.0.0.0', port=7860)