Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,15 @@
|
|
1 |
from flask import Flask, request, jsonify
|
2 |
from flask_cors import CORS
|
3 |
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline, DPMSolverMultistepScheduler
|
4 |
-
from diffusers.models import UNet2DConditionModel
|
5 |
import torch
|
6 |
import os
|
7 |
from PIL import Image
|
8 |
import base64
|
9 |
import time
|
10 |
import logging
|
|
|
11 |
|
12 |
-
# Disable GPU detection
|
13 |
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
14 |
os.environ["CUDA_DEVICE_ORDER"] = ""
|
15 |
os.environ["TORCH_CUDA_ARCH_LIST"] = ""
|
@@ -28,7 +28,7 @@ logger.info(f"Device in use: {torch.device('cpu')}")
|
|
28 |
# Model cache
|
29 |
model_cache = {}
|
30 |
model_paths = {
|
31 |
-
"ssd-1b": "
|
32 |
"sd-v1-5": "remiai3/stable-diffusion-v1-5"
|
33 |
}
|
34 |
|
@@ -41,63 +41,25 @@ ratio_to_dims = {
|
|
41 |
|
42 |
def load_model(model_id):
|
43 |
if model_id not in model_cache:
|
44 |
-
logger.info(f"Loading model {model_id}
|
|
|
45 |
try:
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
logger.warning(f"StableDiffusionXLPipeline failed for {model_id}: {str(e)}")
|
60 |
-
logger.info(f"Falling back to StableDiffusionPipeline for {model_id}")
|
61 |
-
# Fallback to StableDiffusionPipeline with patched UNet
|
62 |
-
unet_config = UNet2DConditionModel.load_config(
|
63 |
-
f"{model_paths[model_id]}/unet",
|
64 |
-
use_auth_token=os.getenv("HF_TOKEN"),
|
65 |
-
force_download=True
|
66 |
-
)
|
67 |
-
if "reverse_transformer_layers_per_block" in unet_config:
|
68 |
-
logger.info(f"Original UNet config for {model_id}: {unet_config}")
|
69 |
-
unet_config["reverse_transformer_layers_per_block"] = None
|
70 |
-
logger.info(f"Patched UNet config for {model_id}: {unet_config}")
|
71 |
-
unet = UNet2DConditionModel.from_config(unet_config)
|
72 |
-
unet.load_state_dict(
|
73 |
-
torch.load(
|
74 |
-
f"{model_paths[model_id]}/unet/diffusion_pytorch_model.bin",
|
75 |
-
map_location="cpu"
|
76 |
-
)
|
77 |
-
)
|
78 |
-
pipe = StableDiffusionPipeline.from_pretrained(
|
79 |
-
model_paths[model_id],
|
80 |
-
unet=unet,
|
81 |
-
torch_dtype=torch.float32,
|
82 |
-
use_auth_token=os.getenv("HF_TOKEN"),
|
83 |
-
use_safetensors=True,
|
84 |
-
low_cpu_mem_usage=True,
|
85 |
-
force_download=True
|
86 |
-
)
|
87 |
-
else:
|
88 |
-
# Standard loading for sd-v1-5
|
89 |
-
pipe = StableDiffusionPipeline.from_pretrained(
|
90 |
-
model_paths[model_id],
|
91 |
-
torch_dtype=torch.float32,
|
92 |
-
use_auth_token=os.getenv("HF_TOKEN"),
|
93 |
-
use_safetensors=True,
|
94 |
-
low_cpu_mem_usage=True,
|
95 |
-
force_download=True
|
96 |
-
)
|
97 |
-
logger.info(f"Pipeline components loading for {model_id}...")
|
98 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
99 |
pipe.enable_attention_slicing()
|
100 |
-
pipe.to(torch.device("cpu"))
|
101 |
model_cache[model_id] = pipe
|
102 |
logger.info(f"Model {model_id} loaded successfully")
|
103 |
except Exception as e:
|
@@ -135,7 +97,7 @@ def generate():
|
|
135 |
|
136 |
width, height = ratio_to_dims.get(ratio, (256, 256))
|
137 |
pipe = load_model(model_id)
|
138 |
-
pipe.to(torch.device("cpu"))
|
139 |
|
140 |
images = []
|
141 |
num_inference_steps = 20 if model_id == 'ssd-1b' else 30
|
|
|
1 |
from flask import Flask, request, jsonify
|
2 |
from flask_cors import CORS
|
3 |
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline, DPMSolverMultistepScheduler
|
|
|
4 |
import torch
|
5 |
import os
|
6 |
from PIL import Image
|
7 |
import base64
|
8 |
import time
|
9 |
import logging
|
10 |
+
from huggingface_hub import list_repo_files
|
11 |
|
12 |
+
# Disable GPU detection (remove these lines if GPU is available)
|
13 |
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
14 |
os.environ["CUDA_DEVICE_ORDER"] = ""
|
15 |
os.environ["TORCH_CUDA_ARCH_LIST"] = ""
|
|
|
28 |
# Model cache
|
29 |
model_cache = {}
|
30 |
model_paths = {
|
31 |
+
"ssd-1b": "segmind/SSD-1B", # Use segmind/SSD-1B for testing
|
32 |
"sd-v1-5": "remiai3/stable-diffusion-v1-5"
|
33 |
}
|
34 |
|
|
|
41 |
|
42 |
def load_model(model_id):
|
43 |
if model_id not in model_cache:
|
44 |
+
logger.info(f"Loading model {model_id} from {model_paths[model_id]}")
|
45 |
+
logger.info(f"HF_TOKEN present: {os.getenv('HF_TOKEN') is not None}")
|
46 |
try:
|
47 |
+
# Log repository files for debugging
|
48 |
+
repo_files = list_repo_files(model_paths[model_id], token=os.getenv("HF_TOKEN"))
|
49 |
+
logger.info(f"Files in {model_paths[model_id]}: {repo_files}")
|
50 |
+
|
51 |
+
# Choose pipeline based on model
|
52 |
+
pipe_class = StableDiffusionXLPipeline if model_id == "ssd-1b" else StableDiffusionPipeline
|
53 |
+
pipe = pipe_class.from_pretrained(
|
54 |
+
model_paths[model_id],
|
55 |
+
torch_dtype=torch.float32,
|
56 |
+
use_auth_token=os.getenv("HF_TOKEN"),
|
57 |
+
use_safetensors=True,
|
58 |
+
low_cpu_mem_usage=True
|
59 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
61 |
pipe.enable_attention_slicing()
|
62 |
+
pipe.to(torch.device("cpu")) # Change to "cuda" if GPU is available
|
63 |
model_cache[model_id] = pipe
|
64 |
logger.info(f"Model {model_id} loaded successfully")
|
65 |
except Exception as e:
|
|
|
97 |
|
98 |
width, height = ratio_to_dims.get(ratio, (256, 256))
|
99 |
pipe = load_model(model_id)
|
100 |
+
pipe.to(torch.device("cpu")) # Change to "cuda" if GPU is available
|
101 |
|
102 |
images = []
|
103 |
num_inference_steps = 20 if model_id == 'ssd-1b' else 30
|