remiai3 commited on
Commit
b8b69c3
·
verified ·
1 Parent(s): 1f798b5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -58
app.py CHANGED
@@ -1,15 +1,15 @@
1
  from flask import Flask, request, jsonify
2
  from flask_cors import CORS
3
  from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline, DPMSolverMultistepScheduler
4
- from diffusers.models import UNet2DConditionModel
5
  import torch
6
  import os
7
  from PIL import Image
8
  import base64
9
  import time
10
  import logging
 
11
 
12
- # Disable GPU detection
13
  os.environ["CUDA_VISIBLE_DEVICES"] = ""
14
  os.environ["CUDA_DEVICE_ORDER"] = ""
15
  os.environ["TORCH_CUDA_ARCH_LIST"] = ""
@@ -28,7 +28,7 @@ logger.info(f"Device in use: {torch.device('cpu')}")
28
  # Model cache
29
  model_cache = {}
30
  model_paths = {
31
- "ssd-1b": "remiai3/ssd-1b",
32
  "sd-v1-5": "remiai3/stable-diffusion-v1-5"
33
  }
34
 
@@ -41,63 +41,25 @@ ratio_to_dims = {
41
 
42
  def load_model(model_id):
43
  if model_id not in model_cache:
44
- logger.info(f"Loading model {model_id}...")
 
45
  try:
46
- if model_id == "ssd-1b":
47
- # Try StableDiffusionXLPipeline first
48
- try:
49
- logger.info(f"Attempting StableDiffusionXLPipeline for {model_id}")
50
- pipe = StableDiffusionXLPipeline.from_pretrained(
51
- model_paths[model_id],
52
- torch_dtype=torch.float32,
53
- use_auth_token=os.getenv("HF_TOKEN"),
54
- use_safetensors=True,
55
- low_cpu_mem_usage=True,
56
- force_download=True
57
- )
58
- except Exception as e:
59
- logger.warning(f"StableDiffusionXLPipeline failed for {model_id}: {str(e)}")
60
- logger.info(f"Falling back to StableDiffusionPipeline for {model_id}")
61
- # Fallback to StableDiffusionPipeline with patched UNet
62
- unet_config = UNet2DConditionModel.load_config(
63
- f"{model_paths[model_id]}/unet",
64
- use_auth_token=os.getenv("HF_TOKEN"),
65
- force_download=True
66
- )
67
- if "reverse_transformer_layers_per_block" in unet_config:
68
- logger.info(f"Original UNet config for {model_id}: {unet_config}")
69
- unet_config["reverse_transformer_layers_per_block"] = None
70
- logger.info(f"Patched UNet config for {model_id}: {unet_config}")
71
- unet = UNet2DConditionModel.from_config(unet_config)
72
- unet.load_state_dict(
73
- torch.load(
74
- f"{model_paths[model_id]}/unet/diffusion_pytorch_model.bin",
75
- map_location="cpu"
76
- )
77
- )
78
- pipe = StableDiffusionPipeline.from_pretrained(
79
- model_paths[model_id],
80
- unet=unet,
81
- torch_dtype=torch.float32,
82
- use_auth_token=os.getenv("HF_TOKEN"),
83
- use_safetensors=True,
84
- low_cpu_mem_usage=True,
85
- force_download=True
86
- )
87
- else:
88
- # Standard loading for sd-v1-5
89
- pipe = StableDiffusionPipeline.from_pretrained(
90
- model_paths[model_id],
91
- torch_dtype=torch.float32,
92
- use_auth_token=os.getenv("HF_TOKEN"),
93
- use_safetensors=True,
94
- low_cpu_mem_usage=True,
95
- force_download=True
96
- )
97
- logger.info(f"Pipeline components loading for {model_id}...")
98
  pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
99
  pipe.enable_attention_slicing()
100
- pipe.to(torch.device("cpu"))
101
  model_cache[model_id] = pipe
102
  logger.info(f"Model {model_id} loaded successfully")
103
  except Exception as e:
@@ -135,7 +97,7 @@ def generate():
135
 
136
  width, height = ratio_to_dims.get(ratio, (256, 256))
137
  pipe = load_model(model_id)
138
- pipe.to(torch.device("cpu"))
139
 
140
  images = []
141
  num_inference_steps = 20 if model_id == 'ssd-1b' else 30
 
1
  from flask import Flask, request, jsonify
2
  from flask_cors import CORS
3
  from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline, DPMSolverMultistepScheduler
 
4
  import torch
5
  import os
6
  from PIL import Image
7
  import base64
8
  import time
9
  import logging
10
+ from huggingface_hub import list_repo_files
11
 
12
+ # Disable GPU detection (remove these lines if GPU is available)
13
  os.environ["CUDA_VISIBLE_DEVICES"] = ""
14
  os.environ["CUDA_DEVICE_ORDER"] = ""
15
  os.environ["TORCH_CUDA_ARCH_LIST"] = ""
 
28
  # Model cache
29
  model_cache = {}
30
  model_paths = {
31
+ "ssd-1b": "segmind/SSD-1B", # Use segmind/SSD-1B for testing
32
  "sd-v1-5": "remiai3/stable-diffusion-v1-5"
33
  }
34
 
 
41
 
42
  def load_model(model_id):
43
  if model_id not in model_cache:
44
+ logger.info(f"Loading model {model_id} from {model_paths[model_id]}")
45
+ logger.info(f"HF_TOKEN present: {os.getenv('HF_TOKEN') is not None}")
46
  try:
47
+ # Log repository files for debugging
48
+ repo_files = list_repo_files(model_paths[model_id], token=os.getenv("HF_TOKEN"))
49
+ logger.info(f"Files in {model_paths[model_id]}: {repo_files}")
50
+
51
+ # Choose pipeline based on model
52
+ pipe_class = StableDiffusionXLPipeline if model_id == "ssd-1b" else StableDiffusionPipeline
53
+ pipe = pipe_class.from_pretrained(
54
+ model_paths[model_id],
55
+ torch_dtype=torch.float32,
56
+ use_auth_token=os.getenv("HF_TOKEN"),
57
+ use_safetensors=True,
58
+ low_cpu_mem_usage=True
59
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
  pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
61
  pipe.enable_attention_slicing()
62
+ pipe.to(torch.device("cpu")) # Change to "cuda" if GPU is available
63
  model_cache[model_id] = pipe
64
  logger.info(f"Model {model_id} loaded successfully")
65
  except Exception as e:
 
97
 
98
  width, height = ratio_to_dims.get(ratio, (256, 256))
99
  pipe = load_model(model_id)
100
+ pipe.to(torch.device("cpu")) # Change to "cuda" if GPU is available
101
 
102
  images = []
103
  num_inference_steps = 20 if model_id == 'ssd-1b' else 30