ollama-embedding / main.py
redfernstech's picture
Update main.py
2c7dfb0 verified
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from langchain_community.llms import Ollama # Correct Import
import logging
import time # Import time module
# Configure logging
logging.basicConfig(level=logging.INFO)
app = FastAPI()
# OpenAI-compatible request format
class OpenAIRequest(BaseModel):
model: str
messages: list
stream: bool = False # Default to non-streaming
# Initialize LangChain LLM with Ollama
def get_llm(model_name: str):
return Ollama(model=model_name)
@app.get("/")
def home():
return {"message": "OpenAI-compatible LangChain + Ollama API is running"}
@app.post("/v1/chat/completions")
def generate_text(request: OpenAIRequest):
try:
llm = get_llm(request.model)
# Extract last user message from messages
user_message = next((msg["content"] for msg in reversed(request.messages) if msg["role"] == "user"), None)
if not user_message:
raise HTTPException(status_code=400, detail="User message is required")
response_text = llm.invoke(user_message)
# OpenAI-like response format
response = {
"id": "chatcmpl-123",
"object": "chat.completion",
"created": int(time.time()),
"model": request.model,
"choices": [
{
"index": 0,
"message": {"role": "assistant", "content": response_text},
"finish_reason": "stop",
}
],
"usage": {
"prompt_tokens": len(user_message.split()),
"completion_tokens": len(response_text.split()),
"total_tokens": len(user_message.split()) + len(response_text.split()),
}
}
return response
except Exception as e:
logging.error(f"Error generating response: {e}")
raise HTTPException(status_code=500, detail="Internal server error")