import os import time from fastapi import FastAPI, Request from fastapi.responses import HTMLResponse from fastapi.staticfiles import StaticFiles from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings from llama_index.llms.huggingface import HuggingFaceInferenceAPI from llama_index.embeddings.huggingface import HuggingFaceEmbedding from pydantic import BaseModel from fastapi.responses import JSONResponse import uuid # for generating unique IDs import datetime from fastapi.middleware.cors import CORSMiddleware from fastapi.templating import Jinja2Templates from huggingface_hub import InferenceClient import json import re from deep_translator import GoogleTranslator # Define Pydantic model for incoming request body class MessageRequest(BaseModel): message: str language: str repo_id = "meta-llama/Meta-Llama-3-8B-Instruct" llm_client = InferenceClient( model=repo_id, token=os.getenv("HF_TOKEN"), ) os.environ["HF_TOKEN"] = os.getenv("HF_TOKEN") app = FastAPI() @app.middleware("http") async def add_security_headers(request: Request, call_next): response = await call_next(request) response.headers["Content-Security-Policy"] = "frame-ancestors *; frame-src *; object-src *;" response.headers["X-Frame-Options"] = "ALLOWALL" return response # Allow CORS requests from any domain app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) @app.get("/favicon.ico") async def favicon(): return HTMLResponse("") # or serve a real favicon if you have one app.mount("/static", StaticFiles(directory="static"), name="static") templates = Jinja2Templates(directory="static") # Configure Llama index settings Settings.llm = HuggingFaceInferenceAPI( model_name="meta-llama/Meta-Llama-3-8B-Instruct", tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct", context_window=3000, token=os.getenv("HF_TOKEN"), max_new_tokens=512, generate_kwargs={"temperature": 0.1}, ) Settings.embed_model = HuggingFaceEmbedding( model_name="BAAI/bge-small-en-v1.5" ) PERSIST_DIR = "db" PDF_DIRECTORY = 'data' # Ensure directories exist os.makedirs(PDF_DIRECTORY, exist_ok=True) os.makedirs(PERSIST_DIR, exist_ok=True) chat_history = [] current_chat_history = [] def data_ingestion_from_directory(): documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data() storage_context = StorageContext.from_defaults() index = VectorStoreIndex.from_documents(documents) index.storage_context.persist(persist_dir=PERSIST_DIR) def initialize(): start_time = time.time() data_ingestion_from_directory() # Process PDF ingestion at startup print(f"Data ingestion time: {time.time() - start_time} seconds") def split_name(full_name): # Split the name by spaces words = full_name.strip().split() # Logic for determining first name and last name if len(words) == 1: first_name = '' last_name = words[0] elif len(words) == 2: first_name = words[0] last_name = words[1] else: first_name = words[0] last_name = ' '.join(words[1:]) return first_name, last_name initialize() # Run initialization tasks def handle_query(query): chat_text_qa_msgs = [ ( "user", """ You are the Hotel voice chatbot and your name is hotel helper. Your goal is to provide accurate, professional, and helpful answers to user queries based on the hotel's data. Always ensure your responses are clear and concise. Give response within 10-15 words only. You need to give an answer in the same language used by the user. {context_str} Question: {query_str} """ ) ] text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) index = load_index_from_storage(storage_context) context_str = "" for past_query, response in reversed(current_chat_history): if past_query.strip(): context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n" query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str) print(query) answer = query_engine.query(query) if hasattr(answer, 'response'): response = answer.response elif isinstance(answer, dict) and 'response' in answer: response = answer['response'] else: response = "Sorry, I couldn't find an answer." current_chat_history.append((query, response)) return response @app.get("/ch/{id}", response_class=HTMLResponse) async def load_chat(request: Request, id: str): return templates.TemplateResponse("index.html", {"request": request, "user_id": id}) @app.get("/voice/{id}", response_class=HTMLResponse) async def load_chat(request: Request, id: str): return templates.TemplateResponse("voice.html", {"request": request, "user_id": id}) @app.post("/chat/") async def chat(request: MessageRequest): message = request.message # Access the message from the request body language = request.language language_code = request.language.split('-')[0] response = handle_query(message) # Process the message response1 = response try: translator = GoogleTranslator(source='en', target=language_code) # Translate to Tamil response1 = translator.translate(response) #response1 = translator.translate(response, dest=language_code).text print(response1) except Exception as e: # Handle translation errors print(f"Translation error: {e}") translated_response = "Sorry, I couldn't translate the response." print(f"Selected Language: {language}") message_data = { "sender": "User", "message": message, "response": response, "timestamp": datetime.datetime.now().isoformat() } chat_history.append(message_data) return {"response": response1} @app.get("/") def read_root(request: Request): return templates.TemplateResponse("home.html", {"request": request})