Spaces:
Runtime error
Runtime error
Vaibhav Srivastav
commited on
Commit
·
3b8d409
1
Parent(s):
d32240b
removing unused code
Browse files
app.py
CHANGED
@@ -12,10 +12,10 @@ model_name = "facebook/wav2vec2-base-960h"
|
|
12 |
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
13 |
model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
14 |
|
15 |
-
def
|
16 |
#read the file
|
17 |
speech, sample_rate = librosa.load(input_file)
|
18 |
-
#make it
|
19 |
if len(speech.shape) > 1:
|
20 |
speech = speech[:,0] + speech[:,1]
|
21 |
#resampling to 16KHz
|
@@ -29,26 +29,23 @@ def fix_transcription_casing(input_sentence):
|
|
29 |
return (' '.join([s.replace(s[0],s[0].capitalize(),1) for s in sentences]))
|
30 |
|
31 |
def predict_and_decode(input_file):
|
32 |
-
speech =
|
33 |
-
|
34 |
input_values = processor(speech, return_tensors="pt", sampling_rate=16000).input_values
|
35 |
logits = model(input_values).logits.cpu().detach().numpy()[0]
|
36 |
-
|
37 |
-
|
38 |
-
# predicted_ids = torch.argmax(logits, dim=-1)
|
39 |
-
# #Get the words from predicted word ids
|
40 |
-
# transcription = tokenizer.decode(predicted_ids[0])
|
41 |
decoder = build_ctcdecoder(vocab_list)
|
42 |
pred = decoder.decode(logits)
|
43 |
|
44 |
-
#Output is all upper case
|
45 |
transcribed_text = fix_transcription_casing(pred.lower())
|
|
|
46 |
return transcribed_text
|
47 |
|
48 |
gr.Interface(predict_and_decode,
|
49 |
-
inputs = gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="
|
50 |
outputs = gr.outputs.Textbox(label="Output Text"),
|
51 |
title="ASR using Wav2Vec 2.0 & pyctcdecode",
|
52 |
-
description = "
|
53 |
layout = "horizontal",
|
54 |
examples = [["test.wav"]], theme="huggingface").launch()
|
|
|
12 |
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
13 |
model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
14 |
|
15 |
+
def load_and_fix_data(input_file):
|
16 |
#read the file
|
17 |
speech, sample_rate = librosa.load(input_file)
|
18 |
+
#make it 1D
|
19 |
if len(speech.shape) > 1:
|
20 |
speech = speech[:,0] + speech[:,1]
|
21 |
#resampling to 16KHz
|
|
|
29 |
return (' '.join([s.replace(s[0],s[0].capitalize(),1) for s in sentences]))
|
30 |
|
31 |
def predict_and_decode(input_file):
|
32 |
+
speech = load_and_fix_data(input_file)
|
33 |
+
|
34 |
input_values = processor(speech, return_tensors="pt", sampling_rate=16000).input_values
|
35 |
logits = model(input_values).logits.cpu().detach().numpy()[0]
|
36 |
+
|
37 |
+
vocab_list = list(processor.tokenizer.get_vocab().keys())
|
|
|
|
|
|
|
38 |
decoder = build_ctcdecoder(vocab_list)
|
39 |
pred = decoder.decode(logits)
|
40 |
|
|
|
41 |
transcribed_text = fix_transcription_casing(pred.lower())
|
42 |
+
|
43 |
return transcribed_text
|
44 |
|
45 |
gr.Interface(predict_and_decode,
|
46 |
+
inputs = gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Record/ Drop audio"),
|
47 |
outputs = gr.outputs.Textbox(label="Output Text"),
|
48 |
title="ASR using Wav2Vec 2.0 & pyctcdecode",
|
49 |
+
description = "Extending HF ASR models with pyctcdecode decoder",
|
50 |
layout = "horizontal",
|
51 |
examples = [["test.wav"]], theme="huggingface").launch()
|