Vaibhav Srivastav commited on
Commit
3b8d409
·
1 Parent(s): d32240b

removing unused code

Browse files
Files changed (1) hide show
  1. app.py +9 -12
app.py CHANGED
@@ -12,10 +12,10 @@ model_name = "facebook/wav2vec2-base-960h"
12
  processor = Wav2Vec2Processor.from_pretrained(model_name)
13
  model = Wav2Vec2ForCTC.from_pretrained(model_name)
14
 
15
- def load_data(input_file):
16
  #read the file
17
  speech, sample_rate = librosa.load(input_file)
18
- #make it 1-D
19
  if len(speech.shape) > 1:
20
  speech = speech[:,0] + speech[:,1]
21
  #resampling to 16KHz
@@ -29,26 +29,23 @@ def fix_transcription_casing(input_sentence):
29
  return (' '.join([s.replace(s[0],s[0].capitalize(),1) for s in sentences]))
30
 
31
  def predict_and_decode(input_file):
32
- speech = load_data(input_file)
33
- #tokenize
34
  input_values = processor(speech, return_tensors="pt", sampling_rate=16000).input_values
35
  logits = model(input_values).logits.cpu().detach().numpy()[0]
36
- vocab_list = list(processor.tokenizer.get_vocab().keys())
37
- # #Take argmax
38
- # predicted_ids = torch.argmax(logits, dim=-1)
39
- # #Get the words from predicted word ids
40
- # transcription = tokenizer.decode(predicted_ids[0])
41
  decoder = build_ctcdecoder(vocab_list)
42
  pred = decoder.decode(logits)
43
 
44
- #Output is all upper case
45
  transcribed_text = fix_transcription_casing(pred.lower())
 
46
  return transcribed_text
47
 
48
  gr.Interface(predict_and_decode,
49
- inputs = gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker"),
50
  outputs = gr.outputs.Textbox(label="Output Text"),
51
  title="ASR using Wav2Vec 2.0 & pyctcdecode",
52
- description = "Wav2Vec2 in-action",
53
  layout = "horizontal",
54
  examples = [["test.wav"]], theme="huggingface").launch()
 
12
  processor = Wav2Vec2Processor.from_pretrained(model_name)
13
  model = Wav2Vec2ForCTC.from_pretrained(model_name)
14
 
15
+ def load_and_fix_data(input_file):
16
  #read the file
17
  speech, sample_rate = librosa.load(input_file)
18
+ #make it 1D
19
  if len(speech.shape) > 1:
20
  speech = speech[:,0] + speech[:,1]
21
  #resampling to 16KHz
 
29
  return (' '.join([s.replace(s[0],s[0].capitalize(),1) for s in sentences]))
30
 
31
  def predict_and_decode(input_file):
32
+ speech = load_and_fix_data(input_file)
33
+
34
  input_values = processor(speech, return_tensors="pt", sampling_rate=16000).input_values
35
  logits = model(input_values).logits.cpu().detach().numpy()[0]
36
+
37
+ vocab_list = list(processor.tokenizer.get_vocab().keys())
 
 
 
38
  decoder = build_ctcdecoder(vocab_list)
39
  pred = decoder.decode(logits)
40
 
 
41
  transcribed_text = fix_transcription_casing(pred.lower())
42
+
43
  return transcribed_text
44
 
45
  gr.Interface(predict_and_decode,
46
+ inputs = gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Record/ Drop audio"),
47
  outputs = gr.outputs.Textbox(label="Output Text"),
48
  title="ASR using Wav2Vec 2.0 & pyctcdecode",
49
+ description = "Extending HF ASR models with pyctcdecode decoder",
50
  layout = "horizontal",
51
  examples = [["test.wav"]], theme="huggingface").launch()