asr-pyctcdecode / app.py
Vaibhav Srivastav
fingers crossed
a084c8f
raw
history blame
2.53 kB
import nltk
import librosa
import torch
import gradio as gr
from pyctcdecode import build_ctcdecoder
from transformers import AutoProcessor, AutoModelForCTC
nltk.download("punkt")
model_name = "facebook/wav2vec2-base-960h"
processor = AutoProcessor.from_pretrained(model_name)
model = AutoModelForCTC.from_pretrained(model_name)
def load_and_fix_data(input_file):
#read the file
speech, sample_rate = librosa.load(input_file)
#make it 1D
if len(speech.shape) > 1:
speech = speech[:,0] + speech[:,1]
#resampling to 16KHz
if sample_rate !=16000:
speech = librosa.resample(speech, sample_rate,16000)
return speech
def fix_transcription_casing(input_sentence):
sentences = nltk.sent_tokenize(input_sentence)
return (' '.join([s.replace(s[0],s[0].capitalize(),1) for s in sentences]))
def predict_and_ctc_decode(input_file):
speech = load_and_fix_data(input_file)
input_values = processor(speech, return_tensors="pt", sampling_rate=16000).input_values
logits = model(input_values).logits.cpu().detach().numpy()[0]
vocab_list = list(processor.tokenizer.get_vocab().keys())
decoder = build_ctcdecoder(vocab_list)
pred = decoder.decode(logits)
transcribed_text = fix_transcription_casing(pred.lower())
return transcribed_text
def predict_and_greedy_decode(input_file):
speech = load_and_fix_data(input_file)
input_values = processor(speech, return_tensors="pt", sampling_rate=16000).input_values
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
pred = processor.batch_decode(predicted_ids)
transcribed_text = fix_transcription_casing(pred[0].lower())
return transcribed_text
def return_all_predictions(input_file, model_name):
print(model_name)
return predict_and_ctc_decode(input_file), predict_and_greedy_decode(input_file)
gr.Interface(return_all_predictions,
inputs = [gr.inputs.Audio(source="microphone", type="filepath", label="Record/ Drop audio"), gr.inputs.Dropdown(["facebook/wav2vec2-base-960h", "facebook/hubert-large-ls960-ft"], label="Model Name")],
outputs = [gr.outputs.Textbox(label="Beam CTC Decoding"), gr.outputs.Textbox(label="Greedy Decoding")],
title="ASR using Wav2Vec 2.0 & pyctcdecode",
description = "Extending HF ASR models with pyctcdecode decoder",
layout = "horizontal",
examples = [["test1.wav", "test2.wav"], ["facebook/wav2vec2-base-960h", "facebook/hubert-large-ls960-ft"]], theme="huggingface").launch()