import gradio as gr import cv2 import numpy as np import torch from ultralytics import SAM, YOLOWorld import os # Initialize models sam_model = SAM("mobile_sam.pt") # Switch to MobileSAM for faster CPU inference yolo_model = YOLOWorld("yolov8n-world.pt") # Nano model for faster detection def detect_motorcycles(first_frame, prompt="motorcycle"): """Detect motorcycles in the first frame using YOLO-World and return bounding boxes.""" yolo_model.set_classes([prompt]) results = yolo_model.predict(first_frame, device="cpu", max_det=2) # Limit to 2 detections boxes = [] for result in results: boxes.extend(result.boxes.xyxy.cpu().numpy()) if len(boxes) > 0: boxes = np.vstack(boxes) else: boxes = np.array([]) return boxes def segment_and_highlight_video(video_path, prompt="motorcycle", highlight_color="red"): """Segment and highlight motorcycles in a video using SAM 2 and YOLO-World.""" # Get first frame for detection cap = cv2.VideoCapture(video_path) ret, first_frame = cap.read() if not ret: raise ValueError("Could not read first frame from video.") # Resize first frame for detection first_frame = cv2.resize(first_frame, (320, 180)) cap.release() # Detect boxes in first frame boxes = detect_motorcycles(first_frame, prompt) if len(boxes) == 0: return video_path # No motorcycles detected, return original # Resize boxes to match SAM input resolution (320x180) scale_x = 320 / first_frame.shape[1] scale_y = 180 / first_frame.shape[0] boxes = boxes * [scale_x, scale_y, scale_x, scale_y] # Run SAM on video with boxes prompt results = sam_model.predict(source=video_path, bboxes=boxes, stream=True, imgsz=320) # Stream and low resolution # Prepare output video cap = cv2.VideoCapture(video_path) fps = cap.get(cv2.CAP_PROP_FPS) width = 320 height = 180 output_path = "output.mp4" out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height)) # Color map for highlighting color_map = {"red": (0, 0, 255), "green": (0, 255, 0), "blue": (255, 0, 0)} highlight_rgb = color_map.get(highlight_color.lower(), (0, 0, 255)) frame_idx = 0 for result in results: frame = cv2.VideoCapture(video_path).read()[1] frame = cv2.resize(frame, (width, height)) # Get masks for this frame if result.masks is not None: masks = result.masks.data.cpu().numpy() # (num_masks, h, w) combined_mask = np.any(masks, axis=0).astype(np.uint8) * 255 mask_colored = np.zeros_like(frame) mask_colored[:, :, 0] = combined_mask * highlight_rgb[0] mask_colored[:, :, 1] = combined_mask * highlight_rgb[1] mask_colored[:, :, 2] = combined_mask * highlight_rgb[2] highlighted_frame = cv2.addWeighted(frame, 0.7, mask_colored, 0.3, 0) else: highlighted_frame = frame out.write(highlighted_frame) frame_idx += 1 cap.release() out.release() return output_path # Gradio interface iface = gr.Interface( fn=segment_and_highlight_video, inputs=[ gr.Video(label="Upload Video"), gr.Textbox(label="Prompt", placeholder="e.g., motorcycle"), gr.Dropdown(choices=["red", "green", "blue"], label="Highlight Color") ], outputs=gr.Video(label="Highlighted Video"), title="Video Segmentation with MobileSAM and YOLO-World (CPU)", description="Upload a short video (5-10 seconds), specify a text prompt (e.g., 'motorcycle'), and choose a highlight color. Optimized for CPU." ) iface.launch()