Spaces:
Runtime error
Runtime error
import gradio as gr | |
import cv2 | |
import numpy as np | |
import torch | |
from ultralytics import SAM, YOLOWorld | |
import os | |
# Initialize models | |
sam_model = SAM("mobile_sam.pt") # Switch to MobileSAM for faster CPU inference | |
yolo_model = YOLOWorld("yolov8n-world.pt") # Nano model for faster detection | |
def detect_motorcycles(first_frame, prompt="motorcycle"): | |
"""Detect motorcycles in the first frame using YOLO-World and return bounding boxes.""" | |
yolo_model.set_classes([prompt]) | |
results = yolo_model.predict(first_frame, device="cpu", max_det=2) # Limit to 2 detections | |
boxes = [] | |
for result in results: | |
boxes.extend(result.boxes.xyxy.cpu().numpy()) | |
if len(boxes) > 0: | |
boxes = np.vstack(boxes) | |
else: | |
boxes = np.array([]) | |
return boxes | |
def segment_and_highlight_video(video_path, prompt="motorcycle", highlight_color="red"): | |
"""Segment and highlight motorcycles in a video using SAM 2 and YOLO-World.""" | |
# Get first frame for detection | |
cap = cv2.VideoCapture(video_path) | |
ret, first_frame = cap.read() | |
if not ret: | |
raise ValueError("Could not read first frame from video.") | |
# Resize first frame for detection | |
first_frame = cv2.resize(first_frame, (320, 180)) | |
cap.release() | |
# Detect boxes in first frame | |
boxes = detect_motorcycles(first_frame, prompt) | |
if len(boxes) == 0: | |
return video_path # No motorcycles detected, return original | |
# Resize boxes to match SAM input resolution (320x180) | |
scale_x = 320 / first_frame.shape[1] | |
scale_y = 180 / first_frame.shape[0] | |
boxes = boxes * [scale_x, scale_y, scale_x, scale_y] | |
# Run SAM on video with boxes prompt | |
results = sam_model.predict(source=video_path, bboxes=boxes, stream=True, imgsz=320) # Stream and low resolution | |
# Prepare output video | |
cap = cv2.VideoCapture(video_path) | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
width = 320 | |
height = 180 | |
output_path = "output.mp4" | |
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height)) | |
# Color map for highlighting | |
color_map = {"red": (0, 0, 255), "green": (0, 255, 0), "blue": (255, 0, 0)} | |
highlight_rgb = color_map.get(highlight_color.lower(), (0, 0, 255)) | |
frame_idx = 0 | |
for result in results: | |
frame = cv2.VideoCapture(video_path).read()[1] | |
frame = cv2.resize(frame, (width, height)) | |
# Get masks for this frame | |
if result.masks is not None: | |
masks = result.masks.data.cpu().numpy() # (num_masks, h, w) | |
combined_mask = np.any(masks, axis=0).astype(np.uint8) * 255 | |
mask_colored = np.zeros_like(frame) | |
mask_colored[:, :, 0] = combined_mask * highlight_rgb[0] | |
mask_colored[:, :, 1] = combined_mask * highlight_rgb[1] | |
mask_colored[:, :, 2] = combined_mask * highlight_rgb[2] | |
highlighted_frame = cv2.addWeighted(frame, 0.7, mask_colored, 0.3, 0) | |
else: | |
highlighted_frame = frame | |
out.write(highlighted_frame) | |
frame_idx += 1 | |
cap.release() | |
out.release() | |
return output_path | |
# Gradio interface | |
iface = gr.Interface( | |
fn=segment_and_highlight_video, | |
inputs=[ | |
gr.Video(label="Upload Video"), | |
gr.Textbox(label="Prompt", placeholder="e.g., motorcycle"), | |
gr.Dropdown(choices=["red", "green", "blue"], label="Highlight Color") | |
], | |
outputs=gr.Video(label="Highlighted Video"), | |
title="Video Segmentation with MobileSAM and YOLO-World (CPU)", | |
description="Upload a short video (5-10 seconds), specify a text prompt (e.g., 'motorcycle'), and choose a highlight color. Optimized for CPU." | |
) | |
iface.launch() |